【题目】设函数、满足关系,其中是常数.
(1)设,,求的解析式;
(2)是否存在函数及常数()使得恒成立?若存在,请你设计出函数及常数;不存在,请说明理由;
(3)已知时,总有成立,设函数()且,对任意,试比较与的大小.
【答案】(1);(2)当时,;当时,;(3).
【解析】
(1)由f(x)的解析式求出f(x+α)的解析式,相乘后得到函数g(x)的解析式;
(2)由逆向思维可知f(x)f(x+α)=sinxcosx,由此可得函数f(x)及一个α;
(3)由给出的f(x)求出g(x),从而求出sin[g(x)]与g(sinx),借助于可得答案.
(1)∵f(x)=cosx+sinx,
∴f(x+α)=cosx﹣sinx;
∴g(x)=f(x)f(x+α)=(cosx+sinx)(cosx﹣sinx)
=cos2x﹣sin2x=cos2x;
(2)∵g(x)sin2x=2sinxcosx,
若f(x)=sinx,则f(x+α)=sin(x+α)=cosx
∴f(x)=sinx,常数;
也可以设f(x)=cosx,则f(x+α)=cos(x+α)=sinx
∴f(x)=cosx,常数;
∴当时,;当时,;
(3)由题意g(x)=kx,sin[g(x)]=sinkx,g(sinx)=ksinx
又0<k<1,所以,
则,所以sinkx>ksinx,
即sin[g(x)]>g(sinx).
科目:高中数学 来源: 题型:
【题目】国家质量监督检验检疫局于2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阀值与检验》国家标准.新标准规定,车辆驾驶人员血液中的酒精含量大于或等于毫克/百毫升,小于毫克/百毫升为饮酒驾车,血液中的酒精含量大于或等于毫克/百毫升为醉酒驾车.经过反复试验,喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如下图,该函数近似模型如下:.
又已知刚好过1小时时测得酒精含量值为毫克/百毫升.根据上述条件,解答以下问题:
(1)试计算喝1瓶啤酒多少小时血液中的酒精含量达到最大值?最大值是多少?
(2)试计算喝1瓶啤酒后多少小时后才可以驾车?(时间以整分钟计算)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是函数一个周期内的图象,将图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,再把所得图象向右平移个单位长度,得到函数的图象.
(1)求函数和的解析式;
(2)若,求的所有可能的值;
(3)求函数(为正常数)在区间内的所有零点之和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业为提高生产质量,引入了一批新的生产设备,为了解生产情况,随机抽取了新、旧设备生产的共200件产品进行质量检测,统计得到产品的质量指标值如下表及图(所有产品质量指标值均位于区间内),若质量指标值大于30,则说明该产品质量高,否则说明该产品质量一般.
质量指标 | 频数 |
2 | |
8 | |
10 | |
30 | |
20 | |
10 | |
合计 | 80 |
(1)根据上述图表完成下列列联表,并判断是否有的把握认为产品质量高与引人新设备有关;
新旧设备产品质量列联表
产品质量高 | 产品质量一般 | 合计 | |
新设备产品 | |||
旧设备产品 | |||
合计 |
(2)从旧设备生产的质量指标值位于区间的产品中,按分层抽样抽取6件产品,再从这6件产品中随机选取2件产品进行质量检测,求至少有一件产品质量指标值位于的概率.
附:,.
0.10 | 0.05 | 0.01 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系上放置一个边长为1的正方形,此正方形沿轴滚动(向左或向右均可),滚动开始时,点位于原点处,设顶点的纵坐标与横坐标的函数关系式,,该函数相邻两个零点之间的距离为.
(1)写出的值并求出顶点到的最小运动路径的长度的值;
(2)写出函数,,的表达式;并研究该函数除周期外的基本性质(无需证明).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】张军自主创业,在网上经营一家干果店,销售的干果中有松子、开心果、腰果、核桃,价格依次为120元/千克、80元/千克、70元/千克、40元千克,为增加销量,张军对这四种干果进行促销:一次购买干果的总价达到150元,顾客就少付x(2x∈Z)元.每笔订单顾客网上支付成功后,张军会得到支付款的80%.
①若顾客一次购买松子和腰果各1千克,需要支付180元,则x=________;
②在促销活动中,为保证张军每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,离心率为,直线与椭圆C交于A,B两点,且.
(1)求椭圆C的方程.
(2)不经过点的直线被圆截得的弦长与椭圆C的长轴长相等,且直线与椭圆C交于D,E两点,试判断的周长是否为定值?若是,求出定值;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com