精英家教网 > 高中数学 > 题目详情
已知F1,F2是椭圆的左、右焦点,点P在椭圆上,且,记线段PF1与Y轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1:2,则该椭圆的离心率等于( )
A.
B.
C.
D.
【答案】分析:先利用PF1与轴的交点为Q,△F1OQ与四边形OF2PQ的面积之比为1:2,点F1(-c,0),求得点P的坐标,代入椭圆标准方程即可得关于a、b、c的等式,从而求得椭圆离心率
解答:解:设Q(0,m),P(x,y)
∵△F1OQ与四边形OF2PQ的面积之比为1:2,
∴△F1OQ与三角形PF1F2的面积之比为1:3
×c×m=××2c×y,∴m=y
又∵
∴x=

,即
∴y2=
将x=和y2=代入椭圆方程得:
即e2+=4,解得e=-1
故选 D
点评:本题主要考查了椭圆的标准方程及其几何性质,特别是椭圆离心率的求法,利用已知几何条件建立关于a、b、c的等式,是解决本题的关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点,若在椭圆上存在一点P,使∠F1PF2=120°,则椭圆离心率的范围是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆
y2
a2
+
x2
b2
=1(a>b>0)
的两个焦点,若椭圆上存在点P使得∠F1PF2=120°,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆的两个焦点.△F1AB为等边三角形,A,B是椭圆上两点且AB过F2,则椭圆离心率是
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 F1、F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点,椭圆上存在一点P,使得SF1PF2=
3
b2
,则该椭圆的离心率的取值范围是
[
3
2
,1)
[
3
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
2
+y2=1
的两个焦点,点P是椭圆上一个动点,那么|
PF1
+
PF2
|
的最小值是(  )

查看答案和解析>>

同步练习册答案