精英家教网 > 高中数学 > 题目详情
4、设集合A={x∈R|x-2>0},B={x∈R|x<0},C={x∈R|x(x-2)>0},则“x∈A∪B”是“x∈C”的(  )
分析:化简集合A,C,求出A∪B,判断出A∪B与C的关系是相等的即充要条件.
解答:解:A={x∈R|x-2>0}={x|x>2}
A∪B={x|x>2或x<0}
C={x∈R|x(x-2)>0}={x|x>2或x<0}
∴A∪B=C
∴“x∈A∪B”是“x∈C”的充要条件
故选C
点评:本题考查判断一个命题是另一个命题的什么条件,先化简各个命题.考查充要条件的定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x∈R|x2-4x=0},集合B={x∈R|x2-2(a+1)x+a2-1=0},
(1)若B=∅,求实数a的取值范围;
(2)若B≠∅,且A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x∈R|x2-3x+2=0},B={x∈R|2x2-ax+2=0},若A∩B=A,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x∈R|x≤2},B={x∈R|
12
2x<6}
,则A∩B=
(-1,2]
(-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x∈R||2x-1|≥1},B={x∈R|
1x
-1>0
},
(1)求A与B的解集   (2)求A∩B.

查看答案和解析>>

同步练习册答案