精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}的前n项和为Sn , S3=﹣15,且a1+1,a2+1,a4+1成等比数列,公比不为1.
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn

【答案】
(1)解:设等差数列{an}的公差为d,

∵a1+1,a2+1,a4+1成等比数列,∴ =(a1+1)(a4+1),

又S3=﹣15,∴ =﹣15,∴a2=﹣5.

∴(﹣5+1)2=(﹣5﹣d+1)(﹣5+2d+1),解得d=0或d=﹣2.

d=0时,公比为1,舍去.

∴d=﹣2.

∴an=a2﹣2(n﹣2)=﹣5﹣2(n﹣2)=﹣2n﹣1


(2)解:由(1)可得:Sn= =﹣n2﹣2n.

∴bn= =﹣ =﹣

∴数列{bn}的前n项和Tn= + + +…+ +

=﹣

=﹣ +


【解析】(1)设等差数列{an}的公差为d,根据a1+1,a2+1,a4+1成等比数列,可得 =(a1+1)(a4+1),又S3=﹣15,可得 =3a2=﹣15,解得a2 , 进而得到d.即可得出an . (2)由(1)可得:Sn=﹣n2﹣2n.可得bn= =﹣ =﹣ ,利用“裂项求和”即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD,侧面PAD是正三角形,底面ABCD是菱形,∠BAD=60°,设平面PAD∩平面PBC=l.
(Ⅰ)求证:l∥平面ABCD;
(Ⅱ)求证:PB⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=|x﹣1|,若方程f(x)= 有4个不相等的实根,则实数a的取值范围是(
A.(﹣ ,1)
B.( ,1)
C.( ,1)
D.(﹣1,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程(m2﹣2m﹣3)x+(2m2+m﹣1)y+6﹣2m=0(m∈R).
(1)求该方程表示一条直线的条件;
(2)当m为何实数时,方程表示的直线斜率不存在?求出这时的直线方程;
(3)已知方程表示的直线l在x轴上的截距为﹣3,求实数m的值;
(4)若方程表示的直线l的倾斜角是45°,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C. (Ⅰ)证明:AC=AB1
(Ⅱ)若AC⊥AB1 , ∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据环保部通报,2016年10月24日起,京津冀周边雾霾又起,为此,环保部及时提出防控建议,推动应对工作由过去“大水漫灌式”的减排方式转变为实现精确打击.某燃煤企业为提高应急联动的同步性,新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对大气环境的污染,已知过滤后废气的污染物数量N(单位:mg/L)与过滤时间t(单位:小时)间的关系为N(t)=N0e﹣λt(N0 , λ均为非零常数,e为自然对数的底数)其中N0为t=0时的污染物数量,若经过5小时过滤后污染物数量为 N0
(1)求常数λ的值;
(2)试计算污染物减少到最初的10%至少需要多少时间?(精确到1小时) 参考数据:ln3≈1.10,ln5≈1.61,ln10≈2.30.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ),(x∈R,A>0,ω>0,|φ|< )的部分图象如图所示:
(1)试确定f(x)的解析式;
(2)若f( )= ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:f1(x)=f(x),当n≥2且x∈N*时,fn(x)=f(fn1(x)),对于函数f(x)定义域内的x0 , 若正在正整数n是使得fn(x0)=x0成立的最小正整数,则称n是点x0的最小正周期,x0称为f(x)的n~周期点,已知定义在[0,1]上的函数f(x)的图象如图,对于函数f(x),下列说法正确的是(写出所有正确命题的编号)

①1是f(x)的一个3~周期点;
②3是点 的最小正周期;
③对于任意正整数n,都有fn )=
④若x0∈( ,1],则x0是f(x)的一个2~周期点.

查看答案和解析>>

同步练习册答案