精英家教网 > 高中数学 > 题目详情
5.某人玩掷骰子(骰子是一个质地均匀的正方体,它的各面上分别标有点数字1、2、3、4、5、6)的游戏,每轮掷两次.第n轮掷出的点数依次为xn,yn.如果$\frac{2}{x_n}+\frac{2}{y_n}<1(n=1,2,…)$,则认为第n轮游戏过关,游戏过关后,则游戏终止.如果某轮游戏不过关,则下一轮继续进行,直至过关后终止.
(Ⅰ)求游戏第一轮过关的概率;
(Ⅱ)如果游戏进行到第3轮,第3轮后不管游戏是否过关,都终止游戏.写出投掷轮数X的分布列,并求X的数学期望.

分析 (Ⅰ)x1>2,y1>2,由题意${x}_{1}>\frac{2{y}_{1}}{{y}_{1}-2}$,由此进行分类讨论经,能求出游戏第一轮过关的概率.
(Ⅱ)设游戏第k轮后终止的概率为pk(k=1,2,3),分别求出相应的概率,由能求出X的分布列和数学期望.

解答 (本小题满分12分)
解:(Ⅰ)由题意得:x1>2,y1>2,则由$\frac{2}{x_1}+\frac{2}{y_1}<1⇒\frac{2}{x_1}<1-\frac{2}{y_1}=\frac{{{y_1}-2}}{y_1}⇒{x_1}>\frac{{2{y_1}}}{{{y_1}-2}}$.…(1分)
当y1=3时,x1>6,这样的x1不存在;
当y1=4时,x1>4⇒x1=5、6;
当y1=5时,${x_1}>\frac{10}{3}⇒{x_1}=4、5、6$;
当y1=6时,x1>3⇒x1=4、5、6.
总之,这样的数组(x1,y1)的个数有8组.
因此,游戏第一轮过关的概率为$\frac{8}{6×6}=\frac{2}{9}$.
(Ⅱ)设游戏第k轮后终止的概率为pk(k=1,2,3),
则${p_1}=\frac{2}{9},{p_2}=({1-\frac{2}{9}})•\frac{2}{9}=\frac{14}{\;},{p_3}=1-{p_1}-{p_2}=\frac{49}{81}$.…(10分)
故X的分布列为:

 X 1 2 3
 P $\frac{2}{9}$ $\frac{14}{81}$ $\frac{49}{81}$
因此$EX=1×\frac{2}{9}+2×\frac{14}{81}+3×\frac{49}{81}=\frac{193}{81}$.…(12分)

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,历年高考中都是必考题型之一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为(  )
A.$\frac{\sqrt{3}}{6}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{2}}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某工厂有120名工人,其年龄都在20~60岁之间,各年龄段人数按[20,30),[30,40),[40,50),[50,60)分成四组,其频率分布直方图如图所示.工厂为了开发新产品,引进了新的生产设备,要求每个工人都要参加A、B两项培训,培训结束后进行结业考试.已知各年龄段两项培训结业考试成绩优秀的人数如表所示.假设两项培训是相互独立的,结业考试也互不影响.
 年龄分组 A项培训成绩优秀人数 B项培训成绩优秀人数
[20,30) 27 16
[30,40) 28 18
[40,50) 26 9
[50,60] 6 4
(1)若用分层抽样法从全厂工人中抽取一个容量为40的样本,求四个年龄段应分别抽取的人数;
(2)根据频率分布直方图,估计全厂工人的平均年龄;
(3)随机从年龄段[20,30)和[40,50)中各抽取1人,设这两人中AB两项培训结业考试成绩都优秀的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=a(x2-1)-lnx.
(1)若y=f(x)在x=2处取得极小值,求a的值;
(2)若f(x)≥0在[1,+∞)上恒成立,求a的取值范围;
(3)求证:当n≥2时,$\frac{1}{ln2}+\frac{1}{ln3}+…+\frac{1}{lnn}>\frac{{3{n^2}-n-2}}{{2{n^2}+2n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知A(-1,-3),B(3,5),点M在直线AB上,且|$\overrightarrow{AM}$|=$\frac{3}{2}$|$\overrightarrow{MB}$|,求$\overrightarrow{OM}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列函数能用二分法求零点的是(  )
A.f(x)=x2B.f(x)=$\sqrt{-{x^2}+1}$C.f(x)=ln(x+2)2D.f(x)=$\frac{1}{{|{{2^x}-3}|}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=x3+x,若$2+f({log_{\frac{1}{a}}}2)>0$,则实数a的取值范围是(0,1)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在数列{an}中,a1=2,${a}_{n+1}=\frac{2{a}_{n}}{n+1}-1$,则a3=$-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若集合A={x|x2-2x>0,x∈R},B={x||x+1|<0,x∈R},则A∩B=∅.

查看答案和解析>>

同步练习册答案