精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,为直角梯形,,平面平面是以为斜边的等腰直角三角形,上一点,且.

1)证明:直线平面

2)求二面角的余弦值.

【答案】1)证明见解析 2

【解析】

1)连接于点,连接,利用相似证得,进而得证;

2)以为坐标原点,所在的方向分别为轴、轴的正方向,与均垂直的方向作为轴的正方向,利用平面法向量求解二面角余弦值即可

解:(1)连接于点,连接,

因为,所以相似,

所以,

,所以,

因为平面,平面,

所以直线平面

2)由题,因为平面平面,平面平面,平面,,所以平面,

为坐标原点,所在的方向分别为轴、轴的正方向,与均垂直的方向作为轴的正方向,建立如图所示的空间直角坐标系,

因为,,

,,,,

所以,,,

设平面的一个法向量为,则

,即,

,得,,于是,

设平面的一个法向量为,则

,即,

,得,,于是,

设二面角的平面角的大小为,则,

所以二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点上.

(1) 求椭圆的方程;

(2) 分别是椭圆的上、下焦点,过的直线与椭圆交于不同的两点,求的内切圆的半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数,其中.

(1)讨论的奇偶性;

(2)时,求证:的最小正周期是

(3),当函数的图像与的图像有交点时,求满足条件的的个数,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(管道构成Rt△FHE,H是直角项点)来处理污水.管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=米,记∠BHE=

(1)试将污水净化管道的长度L表示为的函数,并写出定义域;

(2)当取何值时,污水净化效果最好?并求出此时管道的长度L.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设三棱锥的每个顶点都在球的球面上,是面积为的等边三角形,,且平面平面.

1)求球的表面积;

2)证明:平面平面,且平面平面.

3)与侧面平行的平面与棱分别交于,求四面体的体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,动点满足直线与直线的斜率之积为,设点的轨迹为曲线.

1)求曲线的方程;

2)若过点的直线与曲线交于两点,过点且与直线垂直的直线与相交于点,求的最小值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,△PAC为等腰直角三角形,为正三角形,DA的中点,AC=2

(1)证明:PBAC

(2)若三棱锥的体积为,求二面角APCB的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,若,求的取值范围

2若定义在上奇函数满足,且当时,

上的反函数

3对于(2)中的若关于的不等式上恒成立,求实

的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】春节来临之际,某超市为了确定此次春节年货的进货方案,统计去年春节前后50天年货的日销售量(单位:kg),得到如图所示的频率分布直方图.

(1)求这50天超市日销售量的平均数;(视频率为概率,以各组区间的中点值代表该组的值)

(2)先从日销售在内的天数中,按分层抽样随机抽取4天进行比较研究,再从中选2天,求这2天的日销售量都在内的概率.

查看答案和解析>>

同步练习册答案