【题目】如图,在四棱锥中,为直角梯形,,,平面平面,是以为斜边的等腰直角三角形,,为上一点,且.
(1)证明:直线平面;
(2)求二面角的余弦值.
【答案】(1)证明见解析 (2)
【解析】
(1)连接交于点,连接,利用相似证得,进而得证;
(2)以为坐标原点,所在的方向分别为轴、轴的正方向,与均垂直的方向作为轴的正方向,利用平面法向量求解二面角余弦值即可
解:(1)连接交于点,连接,
因为,所以与相似,
所以,
又,所以,
因为平面,平面,
所以直线平面
(2)由题,因为平面平面,平面平面,平面,,所以平面,
以为坐标原点,所在的方向分别为轴、轴的正方向,与均垂直的方向作为轴的正方向,建立如图所示的空间直角坐标系,
因为,,
则,,,,
所以,,,
设平面的一个法向量为,则
,即,
令,得,,于是,
设平面的一个法向量为,则
,即,
令,得,,于是,
设二面角的平面角的大小为,则,
所以二面角的余弦值为
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,点在上.
(1) 求椭圆的方程;
(2) 设分别是椭圆的上、下焦点,过的直线与椭圆交于不同的两点,求的内切圆的半径的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(管道构成Rt△FHE,H是直角项点)来处理污水.管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=米,记∠BHE=.
(1)试将污水净化管道的长度L表示为的函数,并写出定义域;
(2)当取何值时,污水净化效果最好?并求出此时管道的长度L.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设三棱锥的每个顶点都在球的球面上,是面积为的等边三角形,,,且平面平面.
(1)求球的表面积;
(2)证明:平面平面,且平面平面.
(3)与侧面平行的平面与棱,,分别交于,,,求四面体的体积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,,动点满足直线与直线的斜率之积为,设点的轨迹为曲线.
(1)求曲线的方程;
(2)若过点的直线与曲线交于,两点,过点且与直线垂直的直线与相交于点,求的最小值及此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P—ABC中,△PAC为等腰直角三角形,为正三角形,D为A的中点,AC=2.
(1)证明:PB⊥AC;
(2)若三棱锥的体积为,求二面角A—PC—B的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数;
(1)当时,若,求的取值范围;
(2)若定义在上奇函数满足,且当时, ,
求在上的反函数;
(3)对于(2)中的,若关于的不等式在上恒成立,求实
数的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】春节来临之际,某超市为了确定此次春节年货的进货方案,统计去年春节前后50天年货的日销售量(单位:kg),得到如图所示的频率分布直方图.
(1)求这50天超市日销售量的平均数;(视频率为概率,以各组区间的中点值代表该组的值)
(2)先从日销售在,,内的天数中,按分层抽样随机抽取4天进行比较研究,再从中选2天,求这2天的日销售量都在内的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com