精英家教网 > 高中数学 > 题目详情
11.在菱形ABCD中,A=60°,AB=$\sqrt{3}$,将△ABD沿BD折起到△PBD的位置,若二面角P-BD-C的大小为$\frac{2π}{3}$,则三棱锥P-BCD的外接球体积为(  )
A.$\frac{4}{3}$πB.$\frac{\sqrt{3}}{2}$πC.$\frac{7\sqrt{7}}{6}$πD.$\frac{7\sqrt{7}}{2}$π

分析 取BD中点E,连接AE,CE,则∠AEC=$\frac{2π}{3}$,AE=CE=$\frac{3}{2}$,建立方程组,求出三棱锥P-BCD的外接球的半径,即可求出三棱锥P-BCD的外接球体积.

解答 解:取BD中点E,连接AE,CE,则∠PEC=$\frac{2π}{3}$,PE=CE=$\frac{3}{2}$
设△BCD的外接圆的圆心与球心的距离为h,
三棱锥P-BCD的外接球的半径为R,则$\left\{\begin{array}{l}{{R}^{2}=1+{h}^{2}}\\{(\frac{3\sqrt{3}}{4}-h)^{2}+(\frac{5}{4})^{2}={R}^{2}}\end{array}\right.$,
∴R=$\frac{\sqrt{7}}{2}$,h=$\frac{\sqrt{3}}{2}$,
∴三棱锥P-BCD的外接球体积为$\frac{4}{3}π•(\frac{\sqrt{7}}{2})^{3}$=$\frac{7\sqrt{7}}{6}π$.
故选:C.

点评 本题考查三棱锥P-BCD的外接球体积,考查学生的计算能力,确定三棱锥P-BCD的外接球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系中,O为坐标原点,A,B,C三点满足$\overrightarrow{OC}$=$\frac{5}{3}$$\overrightarrow{OA}$-$\frac{2}{3}$$\overrightarrow{OB}$.
(1)求证:A,B,C三点共线,并求$\frac{|\overrightarrow{AC|}}{|\overrightarrow{BC|}}$的值;
(2)设A(1,sinx),B(1+cosx,2sinx),x∈R,求函数f(x)=$\overrightarrow{OA}$•$\overrightarrow{OB}$的最大值.
(3)若A(1,cosx),B(1+cosx,cosx),x∈(-$\frac{π}{2}$,$\frac{π}{2}$),且函数g(x)=$\overrightarrow{OA}$•$\overrightarrow{OC}$+(2m+$\frac{2}{3}$)•|$\overrightarrow{AB}$|的最小值为$\frac{1}{2}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=x2+(lga+2)x+lgb,且f(-1)=-2,f(x)≥2x(x∈R),求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,直三棱柱ABC-A1B1C1中,D、E分别是AB、BB1的中点.
(Ⅰ)证明:BC1∥平面A1CD;
(Ⅱ)设AA1=AC=CB=2,AB=2$\sqrt{2}$,求异面直线BC1与A1D所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若存在斜率且过点P(-1,-$\frac{b}{a}$)的直线l与双曲线:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$有且仅有一个公共点,且这个公共点恰是双曲线的左顶点,则双曲线的实轴长等于(  )
A.2B.4C.1或2D.2或4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.等比数列{an}的前n项和为Sn,已知S3=a2+5a1,a7=2,则a5=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.长方体长、宽、高分别为2、2、4,则它的体积等于(  )
A.4B.8C.16D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.判断直线(a-1)x+y+a-3=0与圆x2+y2-4y=0的位置关系(  )
A.相离B.相交C.相切D.无法判断

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知四边形ABCD中,|$\overrightarrow{AB}$|=|$\overrightarrow{AD}$|=$\sqrt{2}$,$\overrightarrow{AB}$•$\overrightarrow{AD}$=-$\sqrt{3}$,向量$\overrightarrow{CA}$+$\overrightarrow{AD}$和$\overrightarrow{AB}$-$\overrightarrow{AC}$的夹角为30°,则|$\overrightarrow{AC}$|的最大值等于(  )

查看答案和解析>>

同步练习册答案