精英家教网 > 高中数学 > 题目详情
13.春节是旅游消费旺季,某大型商场通过对春节前后20天的调查,得到部分日经济收入Q与这20天中的第x天(x∈N+)的部分数据如表:
 天数x(天) 35 79 1113 15
 日经济收入Q(万元)154180198 208210 204190
(1)根据表中数据,结合函数图象的性质,从下列函数模型中选取一个最恰当的函数模型描述Q与x的变化关系,只需说明理由,不用证明.
①Q=ax+b,②Q=-x2+ax+b,③Q=ax+b,④Q=b+logax.
(2)结合表中的数据,根据你选择的函数模型,求出该函数的解析式,并确定日经济收入最高的是第几天;并求出这个最高值.

分析 (1)由提供的数据知道,描述宾馆日经济收入Q与天数的变化关系的函数不可能为常数函数,也不可能是单调函数,故选取二次函数Q=-x2+ax+b进行描述,将(3,154)、(5,180)代入Q=-x2+ax+b,代入Q,即得函数解析式;
(2)由二次函数的图象与性质,利用配方法可求取最值.

解答 解:(1)由提供的数据知道,描述宾馆日经济收入Q与天数的变化关系的函数不可能为常数函数,从而用四个中的任意一个进行描述时都应有,
而Q=at+b,Q=ax+b,Q=b+logax三个函数均为单调函数,这与表格所提供的数据不符合,
∴选取二次函数进行描述最恰当;
将(3,154)、(5,180)代入Q=-x2+ax+b,
可得$\left\{\begin{array}{l}{154=-9+3a+b}\\{180=-25+5a+b}\end{array}\right.$,解得a=21,b=100.
∴Q=-x2+21x+100,(1≤x≤20,x∈N*);
(2)Q=-x2+21x+100=-(t-$\frac{21}{2}$)2+$\frac{841}{4}$,
∵1≤x≤20,x∈N*
∴t=10或11时,Q取得最大值210万元.

点评 本题考查了二次函数模型的应用,考查利用二次函数的图象与性质求函数的最值问题,确定函数模型是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.数列{an}表示第n天午时某种细菌的数量.细菌在理想条件下第n天的日增长率rn=0.6(rn=$\frac{{{a_{n+1}}-{a_n}}}{a_n}$,n∈N*).当这种细菌在实际条件下生长时,其日增长率rn会发生变化.如图描述了细菌在理想和实际两种状态下细菌数量Q随时间的变化规律.那么,对这种细菌在实际条件下日增长率rn的规律描述正确的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a,b∈R,函数f(x)=ax+b(0≤x≤1),则f(x)>0恒成立是a+2b>0成立的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.即不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=3,BC=4,AB=5,点D是AB的中点.
(1)求证AC⊥BC1
(2)求证AC1∥平面CDB1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,已知正方体ABCD-A1B1C1D1,M,N分别为A1D1和AA1的中点,则下列四种说法中正确的个数为(  )
①C1M∥AC;
②BD1⊥AC;
③BC1与AC的所成角为60°;
④CD与BN为异面直线.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图是2013年中央电视台举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为(  )
A.85,1.6B.84,4C.84,1.6D.85,4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知某几何体如图1所示.
(1)根据图2所给几何体的正视图与俯视图(其中正方形网络边长为1),画出几何图形的侧视图,并求该侧视图的面积;
(2)求异面直线AC与EF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)满足f(ab)=f(a)+f(b),且f(2)=p,f(3)=q,那么f(18)=p+2q.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.命题“?x0∈R,使得x2-2x-3<0成立”的否定形式是(  )
A.?x0∈R,使得x2-2x-3>0成立B.?x0∈R,使得x2-2x-3≥0成立
C.?x∈R,x2-2x-3<0恒成立D.?x∈R,x2-2x-3≥0恒成立

查看答案和解析>>

同步练习册答案