精英家教网 > 高中数学 > 题目详情
13.命题“若实数a满足a≤3,则a2<9”的否命题是真命题(填“真”、“假”之一).

分析 写出该命题的否命题并判断真假.

解答 解:命题“若实数a满足a≤3,则a2<9”的否命题是
“若实数a满足a>3,则a2≥9”,
它是真命题,因为a>3时,a2>9,
∴a2≥9成立.
故答案为:真.

点评 本题考查了四种命题之间的应用问题,也考查了命题真假的判断问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.下列说法正确的是(  )
A.某人打靶,射击10次,击中7次,那么此人中靶的概率为0.7
B.一位同学做掷硬币试验,掷6次,一定有3次“正面朝上”
C.某地发行福利彩票,回报率为47%,有人花了100元钱买彩票,一定会有47元的回报
D.概率等于1的事件不一定为必然事件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}的前n项和${S_n}={n^2}-4n+1$,则a1+a2+a3+…+a10=61.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数$y=\frac{ln(2x-1)}{{\sqrt{2-x}}}$的定义域为(  )
A.($\frac{1}{2}$,+∞)B.($\frac{1}{2}$,2)C.($\frac{1}{2}$,1)D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,一个正方形OABC在斜二测画法下的直观图是个一条边长为1的平行四边形,则正方形OABC的面积为(  )
A.1B.4C.1或4D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知方程lnx-ax+1=0(a为实常数)有两个不等实根,则实数a的取值范围是(  )
A.(0,e)B.[1,e]C.(0,1)D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)唯一的一个零点同时在区间(0,8)、(0,6)、(0,4)、(0,2)内,那么下列命题中正确的是(  )
A.函数f(x)在区间(0,1)内有零点B.函数f(x)在区间(0,1)或(1,2)内有零点
C.函数f(x)在区间[2,8)内无零点D.函数f(x)在区间(1,8)内无零点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=-\frac{3}{2}{x^2}+ax-1$;
(1)若函数f(x)在(-∞,+∞)上至少有一个零点,求a的取值范围;
(2)求函数f(x)在[1,2]上的最大值;
(3)若函数g(x)=f(x)+1在R上的最大值不大于$\frac{1}{6}$,又当$x∈[\frac{1}{4},\frac{1}{2}]$时,$f(x)≥\frac{1}{8}$,求a得值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1-x}{ax}$+lnx
(1)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;
(2)当a=1时,求函数f(x)在[$\frac{1}{2}$,2]上的最值;
当a=1时,对大于1的任意正整数n,试比较ln$\frac{n}{n-1}$与$\frac{1}{n}$的大小关系.

查看答案和解析>>

同步练习册答案