精英家教网 > 高中数学 > 题目详情
18.函数y=$\sqrt{{x}^{2}-4x+13}$-$\sqrt{{x}^{2}+1}$的最大值是(  )
A.2$\sqrt{2}$B.10C.$\sqrt{10}$D.0

分析 由配方可得函数表示x轴上的一点P(x,0)与点A(2,3)和B(0,1)的距离之差,连接AB延长交x轴于P,由|PA|-|PB|≤|AB|,运用两点的距离公式,计算即可得到最大值.

解答 解:函数y=$\sqrt{{x}^{2}-4x+13}$-$\sqrt{{x}^{2}+1}$
=$\sqrt{(x-2)^{2}+9}$-$\sqrt{{x}^{2}+1}$,
表示x轴上的一点P(x,0)与点A(2,3)和B(0,1)的距离之差,
如图,连接AB延长交x轴于P,
由kAB=kAP=1,可得P(-1,0).
|PA|-|PB|≤|AB|,
由|AB|=$\sqrt{(2-0)^{2}+(3-1)^{2}}$=2$\sqrt{2}$,
故最大值为2$\sqrt{2}$.
故选A.

点评 本题考查函数的最值的求法,注意运用几何意义,结合三点共线知识,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知直线l:x+my+4=0,若曲线x2+y2+2x-6y+1=0上存在两点P、Q关于直线l对称,则m的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=aln x-ax-1(a∈R).
(1)若a=-1,求函数f(x)的单调区间;
(2)若x1,x2∈[1,+∞),比较ln(x1x2)与x1+x2-2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an} 满足a1=$\frac{1}{2}$,an+1=an+1+$\frac{1}{{2}^{n+1}}$(n∈N+
(Ⅰ)求证:数列{an+$\frac{1}{{2}^{n}}$}成等差数列;
(Ⅱ)求数列{an}的前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=|x-4|+|x-3|,f(x)的最小值为m.
(1)求m的值;
(2)当a+2b=m(a,b∈R),求a2+b2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.空间直角坐标系中,点A坐标为(1,$\sqrt{3}$,2),且△MNP三个顶点分别满足:M是A在平面xOy上的射影点,N与A关于x轴对称,P与A关于平面xOz对称,则△MNP的面积为$4\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义在(0,$\frac{π}{2}$)上的函数f(x),其导函数f′(x)在(0,$\frac{π}{2}$)上总使得f(x)<f′(x)•tanx成立,则下列各式中一定成立的是(  )
A.f($\frac{π}{6}$)>$\sqrt{3}$f($\frac{π}{3}$)B.f($\frac{π}{6}$)<$\sqrt{3}$f($\frac{π}{3}$)C.$\sqrt{3}$f($\frac{π}{6}$)>f($\frac{π}{3}$)D.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.偶函数f(x)满足?x∈R,f(x+2)=f(2-x),f(3)=3,则f(2015)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的首项a1=1,${a_{n+1}}=\frac{a_n}{{1+2{a_n}}}$(n∈N*).
(1)求a2,a3,a4
(2)猜想{an}的通项公式,并用你学过的数学方法证明.

查看答案和解析>>

同步练习册答案