精英家教网 > 高中数学 > 题目详情
1.已知实数x,y满足$\left\{\begin{array}{l}{x+y≤10}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,则z=x+$\frac{y}{2}$的最大值为(  )
A.7B.1C.10D.0

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x+y≤10}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$作出可行域如图,

A(10,0),
化目标函数z=x+$\frac{y}{2}$为y=-2x+2z,由图可知,当直线y=-2x+2z过点A时,直线在y轴上的截距最大,z有最大值为10.
故选:C.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.为了测试某药物的预防效果,进行动物试验,发现在测试的50只未服药的动物中有20只患病,60只服药的动物中有10只患病.分别利用图形和独立性检验的方法判断药物是否有效 你得到的结论在什么范围内有效.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=a(x-\frac{1}{x})-2lnx\;(a∈R)$.
(1)求函数f(x)的单调增区间;
(2)设函数$g(x)=-\frac{a}{x}$.若至少存在一个x0∈[1,e],使得f(x0)>g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知z=$\frac{-3-i}{1+2i}$,则z的虚部为(  )
A.1B.-1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知O为△ABC内一点,满足4$\overrightarrow{AO}$=$\overrightarrow{AB}$+2$\overrightarrow{AC}$,则△AOB与△AOC面积之比为(  )
A.1:1B.1:2C.1:3D.2:1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx,g(x)=(x-1)f′(x),其中f′(x)是f(x)的导函数.
(Ⅰ)求曲线y=f(x)在点(e,1)处的切线方程;
(Ⅱ)若f(x)≥ag(x)在[3,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在椭圆的标准方程中,a=6,b=$\sqrt{35}$,则椭圆的标准方程是(  )
A.$\frac{x^2}{36}+\frac{y^2}{35}=1$B.$\frac{y^2}{36}+\frac{x^2}{35}=1$C.$\frac{x^2}{36}+{y^2}=1$D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图1,在等腰直角三角形ABC中,∠B=90°,将△ABC沿中位线DE翻折得到如图2所示的空间图形,使二面角A-DE-C的大小为θ(0<θ<$\frac{π}{2}$).

(1)求证:平面ABD⊥平面ABC;
(2)若θ=$\frac{π}{3}$,求直线AE与平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,D为BC的中点,若$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{CB}$=$\overrightarrow{b}$,则$\overrightarrow{AD}$为(  )
A.$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$B.$\frac{1}{2}$$\overrightarrow{b}$-$\overrightarrow{a}$C.$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow{b}$D.$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$

查看答案和解析>>

同步练习册答案