精英家教网 > 高中数学 > 题目详情

设等差数列{an}的前n项和为Sn,已知a3=24,S11=0.
(1)求an
(2)求数列{an}的前n项和Sn
(3)当n为何值时,Sn最大,并求Sn的最大值

解:(1)依题意有
解之得,∴an=48-8n.
(2)由(1)知,a1=40,an=48-8n,
∴Sn==-4n2+44n.
(3)由(2)有,Sn=-4n2+44n=-4+121,
故当n=5或n=6时,Sn最大,且Sn的最大值为120.
分析:(1)分别利用等差数列的通项公式及等差数列的前n项和的公式由a3=24,S11=0表示出关于首项和公差的两个关系式,联立即可求出首项与公差,即可得到数列的通项公式;
(2)根据(1)求出的首项与公差,利用等差数列的前n项和的公式即可表示出Sn
(3)根据(2)求出的前n项和的公式得到Sn是关于n的开口向下的二次函数,根据n为正整数,利用二次函数求最值的方法求出Sn的最大值即可.
点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式,灵活运用二次函数求最值的方法解决实际问题,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn.若S2k=72,且ak+1=18-ak,则正整数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为TnTn+
an+12n
(λ为常数).令cn=b2n(n∈N)求数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项之和为Sn满足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,已知(a4-1)3+2012(a4-1)=1(a2009-1)3+2012(a2009-1)=-1,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若S9=81,S6=36,则S3=(  )

查看答案和解析>>

同步练习册答案