精英家教网 > 高中数学 > 题目详情
6.倾斜角为$\frac{π}{4}$的直线l与抛物线y2=2px(p>0)有公共点(1,2).求:
(1)抛物线的方程;
(2)直线l的方程;
(3)抛物线的焦点到直线l的距离.

分析 (1)(1,2)代入抛物线y2=2px,求出p=2,可得抛物线的方程为y2=4x;
(2)设直线l的方程y=x+b,(1,2)代入,可得b=1,可得直线l的方程;
(3)焦点F(1,0),利用点到直线的距离公式求出抛物线的焦点到直线l的距离.

解答 解:(1)(1,2)代入抛物线y2=2px,可得4=2p,∴p=2,
∴抛物线的方程为y2=4x;
(2)设直线l的方程y=x+b,(1,2)代入,可得b=1,即直线l的方程:y=x+1;
(3)焦点F(1,0),到直线x-y+1=0的距离=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$.

点评 本题考查直线、抛物线的方程,考查点到直线的距离公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.抛物线x=2ay2的准线方程是x=1,则a的值是(  )
A.-$\frac{1}{8}$B.$\frac{1}{8}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解不等式组:$\left\{\begin{array}{l}{\frac{x}{2}+\frac{x+1}{3}>0}\\{x+\frac{7}{3}>\frac{4(x+1)}{3}+\frac{3}{5}}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.过点A(-1,6)向圆(x-3)2+(y+2)2=25作切线,则切线长为$\sqrt{55}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合A={a|a=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z},B=[-π,π],则A∩B={-$\frac{2π}{3}$,-$\frac{π}{6}$,$\frac{π}{3}$,$\frac{5π}{6}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,若2bccosBcosC=b2sin2C+c2sin2B,那么△ABC是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知扇形AOB的周长是6cm,该扇形中心角是$\frac{π}{3}$弧度,
(1)求该弓形的周长;
(2)求该弓形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知(xlgx+y)n的展开式的末三项的二项式系数之和是22,中间一项为20000y3,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线y=3x上一点P的横坐标为a,有两定点A(a,3a+2)、B(3,3),向量$\overrightarrow{PA}$与$\overrightarrow{PB}$夹角为钝角,求实数a的取值范围.

查看答案和解析>>

同步练习册答案