【题目】设函数f(x)=lnx﹣ax2+ax,a为正实数.
(1)当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求证:f( )≤0;
(3)若函数f(x)有且只有1个零点,求a的值.
【答案】
(1)解:当a=2时,f(x)=lnx﹣2x2+2x,f′(x)= ﹣2x+2,
∴f′(1)=1,
∵f(1)=0,
∴曲线y=f(x)在点(1,f(1))处的切线方程是y=x
(2)证明:f( )=﹣lna﹣ +1(a>0),
令g(x)=﹣lnx﹣ +1(x>0),则g′(x)= ,
∴0<x<1时,g′(x)>0,函数单调递增;x>1时,g′(x)<0,函数单调递减,
∴x=1时,函数取得极大值,即最大值,
∴g(x)≤g(1)=0,
∴f( )≤0;
(3)解:由题意可知,函数f(x)有且只有1个零点为(1,0),
则f′(1)=0,即1﹣2a+a=0
∴a=1
【解析】(1)求导数,确定切线的斜率,切点坐标,可得切线方程;(2)构造函数,确定函数的单调性与最值,即可证明结论;(3)由题意可知,函数f(x)有且只有1个零点为(1,0),则f′(1)=0,即可得出结论.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sinωx+cosωx的最小正周期为π,x∈R,ω>0是常数.
(1)求ω的值;
(2)若f(+)= , θ∈(0,),求sin2θ.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 在(1,+∞)上是增函数,且a>0.
(Ⅰ)求a的取值范围;
(Ⅱ)求函数g(x)=ln(1+x)﹣x在[0,+∞)上的最大值;
(Ⅲ)已知a>1,b>0,证明: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线x2﹣ =1的左右焦点分别为F1、F2 , 过点F2的直线交双曲线右支于A,B两点,若△ABF1是以A为直角顶点的等腰三角形,则△AF1F2的面积为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】锐角△ABC中,内角A,B,C的对边分别为a,b,c,且满足(a﹣b)(sinA+sinB)=(c﹣b)sinC,若 ,则b2+c2的取值范围是( )
A.(5,6]
B.(3,5)
C.(3,6]
D.[5,6]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com