【题目】矩形中,,为中点,将沿所在直线翻折,在翻折过程中,给出下列结论:
①存在某个位置,; ②存在某个位置,;
③存在某个位置,; ④存在某个位置,.
其中正确的是( )
A. ①② B. ③④ C. ①③ D. ②④
科目:高中数学 来源: 题型:
【题目】如图,已知、两个城镇相距20公里,设是中点,在的中垂线上有一高铁站,的距离为10公里.为方便居民出行,在线段上任取一点(点与、不重合)建设交通枢纽,从高铁站铺设快速路到处,再铺设快速路分别到、两处.因地质条件等各种因素,其中快速路造价为1.5百万元/公里,快速路造价为1百万元/公里,快速路造价为2百万元/公里,设,总造价为(单位:百万元).
(1)求关于的函数关系式,并指出函数的定义域;
(2)求总造价的最小值,并求出此时的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年是中国改革开放40周年,改革开放40年来,从开启新时期到跨入新世纪,从站上新起点到进人新时代,我们党引领人民绘就了一幅波澜壮阔、气势恢宏的历史画卷,谱写了一曲感天动地、气壮山河的奋斗赞歌,40年来我们始终坚持保护环境和节约资源,坚持推进生态文明建设,郑州市政府也越来越重视生态系统的重建和维护,若市财政下拨一项专款100百万元,分别用于植绿护绿和处理污染两个生态维护项目,植绿护绿项目五年内带来的生态收益可表示为投放资金x(单位:百万元)的函数M(x(单位:百万元):,处理污染项目五年内带来的生态收益可表示为投放资金x(单位:百万元)的函数N(x)(单位:百万元):.
(Ⅰ)设分配给植绿护绿项目的资金为x(百万元),则两个生态项目五年内带来的收益总和为y,写出y关于x的函数解析式和定义域。
(Ⅱ)生态项目的投资开始利润薄弱,只有持之以恒,才能功在当代,利在千秋,试求出y的最大值,并求出此时对两个生态项目的投资分别为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年,随着中国第一款5G手机投入市场,5G技术已经进入高速发展阶段.已知某5G手机生产厂家通过数据分析,得到如下规律:每生产手机万台,其总成本为,其中固定成本为800万元,并且每生产1万台的生产成本为1000万元(总成本=固定成本+生产成本),销售收入万元满足
(1)将利润表示为产量万台的函数;
(2)当产量为何值时,公司所获利润最大?最大利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某粮油超市每月按出厂价30元/袋购进种大米,根据以往的统计数据,若零售价定为42元/袋,每月可销售320袋.现为了促销,经调查,若零售价每降低一元,则每月可多销售40袋.在每月的进货都销售完的前提下,零售价定为多少元/袋以及每月购进多少袋大米,超市可获得最大利润,并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人在相同的条件下投篮5轮,每轮甲、乙各投篮10次,投篮命中次数的情况如图所示(实线为甲的折线图,虚线为乙的折线图),则以下说法错误的是( )
A. 甲投篮命中次数的众数比乙的小
B. 甲投篮命中次数的平均数比乙的小
C. 甲投篮命中次数的中位数比乙的大
D. 甲投篮命中的成绩比乙的稳定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中为常数,且.
(1)若,求函数的表达式;
(2)在(1)的条件下,设函数,若在区间[-2,2]上是单调函数,求实数的取值范围;
(3)是否存在实数使得函数在[-1,4]上的最大值是4?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com