精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)和g(x)的图象关于原点对称,且f(x)x22x.

(1)求函数g(x)的解析式;

(2)解不等式g(x)≥f(x)-|x-1|;

(3)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围.

【答案】1;(2;(3

【解析】试题分析:(1)设函数的图象上任意一点关于原点的对称点为,求出 坐标关系,然后把坐标代入解析式即可;(2)把不等式表示出来,分两种情况可解;(3)写出的解析式,由题意可知为函数的增区间的子集,分情况讨论可求的范围.

试题解析:(1)设函数的图象上任一点关于原点的对称点为,则 ,即,∵点在函数的图象上,∴,即,故.

(2)由可得: ,当时, ,此时不等式无解;当时, ,∴,因此,原不等式的解集为.

(3) .

①当时,得上是增函数,符合题意,∴.

②当时,抛物线的对称轴的方程为.

(ⅰ)当,且时, 上是增函数,解得.

(ⅱ)当,且时, 上是增函数,解得,综上,得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的右焦点为F,右顶点为A,设离心率为e,且满足,其中O为坐标原点.

(Ⅰ)求椭圆C的方程;

(Ⅱ)过点的直线l与椭圆交于MN两点,求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 . (Ⅰ)当m=8时,求f(﹣4)的值;
(Ⅱ)当m=8且x∈[﹣8,8]时,求|f(x)|的最大值;
(Ⅲ)对任意的实数m∈[0,2],都存在一个最大的正数K(m),使得当x∈[0,K(m)]时,不等式|f(x)|≤2恒成立,求K(m)的最大值以及此时相应的m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位: )和年利润(单位:千元)的影响.对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.

表中.

(1)根据散点图判断哪一个适宜作为年销售量关于年宣传费的回归类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立关于的回归方程;

(3)已知这种产品的利润的的关系为.根据(2)的结果回答下列问题:

(ⅰ)年宣传费时,年销售量及年利润的预报值是多少?

(ⅱ)年宣传费为何值时,年利润的预报值最大?

附:对于一组数据,其回归直线的的斜率和截距的最小二乘估计为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在圆x2+y2=9上任取一点P,过点P作y轴的垂线段PD,D为垂足,当P为圆与y轴交点时,P与D重合,动点M满足 =2
(1)求点M的轨迹C的方程;
(2)抛物线C′的顶点在坐标原点,并以曲线C在y轴正半轴上的顶点为焦点,直线y=x+3与抛物线C′交于A、B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,有一块半径长为1米的半圆形钢板,现要从中截取一个内接等腰 梯形部件ABCD,设梯形部件ABCD的面积为平方米.

1按下列要求写出函数关系式:

,将表示成的函数关系式;

,将表示成的函数关系式.

2求梯形部件ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是首项为正数的等差数列,a1a2=3,a2a3=5.
(1)求数列{an}的通项公式;
(2)设bn=(an+1)2 ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4cosωxsin(ωx+ )+a(ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π. (Ⅰ)求a和ω的值;
(Ⅱ)求函数f(x)在[0,π]上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司研发出一款产品,批量生产前先在某城市销售30天进行市场调查.调查结果发现:日销量与天数的对应关系服从图①所示的函数关系:每件产品的销售利润与天数的对应关系服从图②所示的函数关系.图①由抛物线的一部分(为抛物线顶点)和线段组成.

(Ⅰ)设该产品的日销售利润 ,分别求出 的解析式,

(Ⅱ)若在30天的销售中,日销售利润至少有一天超过8500元,则可以投入批量生产,该产品是否可以投入批量生产,请说明理由.

查看答案和解析>>

同步练习册答案