精英家教网 > 高中数学 > 题目详情

已知椭圆C=1(ab>0)的离心率为,其左、右焦点分别是F1F2,过点F1的直线l交椭圆CEG两点,且△EGF2的周长为4.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点AB,设P为椭圆上一点,且满足t (O为坐标原点),当||<时,求实数t的取值范围.

(1)y2=1.(2).

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆
(1)求的值;
(2)试判断圆轴的位置关系;
(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平面直角坐标系xoy中,动点满足:点P到定点与到y轴的距离之差为.记动点P的轨迹为曲线C.
(1)求曲线C的轨迹方程;
(2)过点F的直线交曲线C于A、B两点,过点A和原点O的直线交直线于点D,求证:直线DB平行于x轴.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.
(1)求椭圆C的方程;
(2)AB为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C于点P.设t,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的中心在坐标原点,焦点在x轴上,长轴长是短轴长的2倍,且经过点M(2,1),平行于OM的直线ly轴上的截距为m,直线l与椭圆相交于AB两个不同点.

(1)求实数m的取值范围;
(2)证明:直线MAMBx轴围成的三角形是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心为原点,离心率,其一个焦点在抛物线的准线上,若抛物线与直线相切.
(1)求该椭圆的标准方程;
(2)当点在椭圆上运动时,设动点的运动轨迹为.若点满足:,其中上的点,直线的斜率之积为,试说明:是否存在两个定点,使得为定值?若存在,求的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知顶点为原点的抛物线的焦点与椭圆的右焦点重合,在第一和第四象限的交点分别为.
(1)若△AOB是边长为的正三角形,求抛物线的方程;
(2)若,求椭圆的离心率
(3)点为椭圆上的任一点,若直线分别与轴交于点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为椭圆的左右焦点,是坐标原点,过作垂直于轴的直线交椭圆于,设 .
(1)证明: 成等比数列;
(2)若的坐标为,求椭圆的方程;
(3)在(2)的椭圆中,过的直线与椭圆交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线x2=1.
 
(1)若一椭圆与该双曲线共焦点,且有一交点P(2,3),求椭圆方程.
(2)设(1)中椭圆的左、右顶点分别为AB,右焦点为F,直线l为椭圆的右准线,Nl上的一动点,且在x轴上方,直线AN与椭圆交于点M.若AMMN,求∠AMB的余弦值;
(3)设过AFN三点的圆与y轴交于PQ两点,当线段PQ的中点为(0,9)时,求这个圆的方程.

查看答案和解析>>

同步练习册答案