精英家教网 > 高中数学 > 题目详情
设函数f(x)=x3+x,若0<θ≤
π2
时,f(mcosθ)+f(1-m)>0恒成立,则m取值范围是
 
分析:由函数f(x)=x3+x,可知f(x)为奇函数,增函数,然后可得f(mcosθ)>f(m-1),从而得出mcosθ>m-1,根据cosθ∈[0,1],即可求解.
解答:解:由函数f(x)=x3+x,可知f(x)为奇函数,增函数,
∴f(mcosθ)+f(1-m)>0恒成立,即f(mcosθ)>f(m-1),
∴mcosθ>m-1,当0<θ≤
π
2
时,cosθ∈[0,1],
m>m-1
0>m-1
,解得:m<1,
故答案为:(-∞,1).
点评:本题考查了函数恒成立的问题,难度较大,关键是先判断函数的奇偶性与单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).
(Ⅰ)求a,b的值;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2+x+1,a∈R.
(1)若x=1时,函数f(x)取得极值,求函数f(x)的图象在x=-1处的切线方程;
(2)若函数f(x)在区间(
12
,1)
内不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2-a2x+5(a>0)
(1)当函数f(x)有两个零点时,求a的值;
(2)若a∈[3,6],当x∈[-4,4]时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3x2-9x-1.求:
(Ⅰ)函数在(1,f(1))处的切线方程;
(Ⅱ)函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3•cosx+1,若f(a)=5,则f(-a)=
 

查看答案和解析>>

同步练习册答案