如图所示,已知正方形和矩形所在的平面互相垂直, 是线段的中点。
(1)证明:∥平面
(2)求异面直线与所成的角的余弦值。
科目:高中数学 来源: 题型:解答题
AB为圆O的直径,点E、F在圆上,AB//EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,BC=EF=1。
(I)求证:BF⊥平面DAF;
(II)求多面体ABCDFE的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE,F为CD中点.
(Ⅰ)求证:EF⊥平面BCD;
(Ⅱ)求二面角C-DE-A的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,AB=1,AA1=,D为AA1中点,BD与AB1交于点O,CO丄侧面ABB1A1.
(Ⅰ)证明:BC丄AB1;
(Ⅱ)若OC=OA,求二面角C1-BD-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上.
(1)求证:平面A1BC⊥平面ABB1A1;
(2)若,AB=BC=2,P为AC中点,求三棱锥的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于C、D的点,AE=3,正方形ABCD的边长为.
(1)求证:平面ABCD丄平面ADE;
(2)求四面体BADE的体积;
(3)试判断直线OB是否与平面CDE垂直,并请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如下图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1;
(2)求证:AC1∥平面CDB1;
(3)求异面直线AC1与B1C所成角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com