分析 (1)若存在,则x1x2=$\frac{k+1}{4k}$=1,从而化方程为x2-x+1=0,从而判断;
(2)由题意得$\left\{\begin{array}{l}{4k≠0}\\{△=(4k)^{2}-4×4k×(k+1)≥0}\end{array}\right.$,从而可得k<0,x1+x2=1,x1x2=$\frac{k+1}{4k}$;从而化简$\frac{{x}_{1}}{{x}_{2}}$+$\frac{{x}_{2}}{{x}_{1}}$-2=$\frac{4k}{k+1}$-4;从而判断求解.
解答 解:(1)若存在,则x1x2=$\frac{k+1}{4k}$=1,
解得,k=$\frac{1}{3}$,
此时方程可化为x2-x+1=0,方程无解;
故不存在;
(2)由题意得,
$\left\{\begin{array}{l}{4k≠0}\\{△=(4k)^{2}-4×4k×(k+1)≥0}\end{array}\right.$,
解得,k<0;
∴x1+x2=1,x1x2=$\frac{k+1}{4k}$,
$\frac{{x}_{1}}{{x}_{2}}$+$\frac{{x}_{2}}{{x}_{1}}$-2=$\frac{({x}_{1}+{x}_{2})^{2}-2{x}_{1}{x}_{2}}{{x}_{1}{x}_{2}}$-2
=$\frac{1}{\frac{k+1}{4k}}$-4=$\frac{4k}{k+1}$-4;
又∵k<0,
∴k+1=-1,-2,-4;
故k=-2,-3,-5.
点评 本题考查了二次函数与二次方程的关系应用及化简运算.
科目:高中数学 来源: 题型:选择题
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com