精英家教网 > 高中数学 > 题目详情
1
1×3
+
1
2×4
+
1
3×5
+
1
4×6
+…+
1
n(n+2)
=(  )
A.
1
n(n+2)
B.
1
2
(1-
1
n+2
C.
1
2
3
2
-
1
n+1
-
1
n+2
D.
1
2
(1-
1
n+1
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

1
1×3
+
1
2×4
+
1
3×5
+
1
4×6
+…+
1
n(n+2)

=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)+(
1
4
-
1
6
)+…+(
1
n-2
-
1
n
)+(
1
n-1
-
1
n+1
)+(
1
n
-
1
n+2
)]
=
1
2
(1+
1
2
-
1
n+1
-
1
n+2

=
1
2
3
2
-
1
n+1
-
1
n+2
),
故答案选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知等差数列{an}的前n项和为Sn,且S4=3,S8=7,则S12的值是 (      )
A  8     B  11                 C  12              D  15

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

数列{an}的通项公式为an=(-1)n-1(4n-3),则S100等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设an(n=2,3,4…)是(3+
x
)n
展开式中x的一次项的系数,则
2010
2009
(
32
a2
+
33
a3
+…+
32010
a2010
)
的值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的各项均为正数,观察程序框图,若k=5,k=10时,分别有S=
5
11
S=
10
21

(1)试求数列{an}的通项;
(2)令bn=2an,求b1+b2+…+bm的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(文)Sn=1-2+3-4+5-6+…+(-1)n+1•n,则S100+S200+S301等于(  )
A.1B.-1C.51D.52

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列{an}的前n项和为Sn,且Sn=4an+2n+1,n∈N*
(1)求证:{an-2}是等比数列;
(2)求数列{nan}前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设数列{an},{bn}都是正项等比数列,Sn,Tn分别为数列{lgan}与{lgbn}的前n项和,且
Sn
Tn
=
n
2n+1
,则logb5a5=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

记数列{an}的前n项和为Sn,且Sn=2(an-1),则a2=(  )
A.4B.2C.1D.-2

查看答案和解析>>

同步练习册答案