精英家教网 > 高中数学 > 题目详情
7.已知定义在R上的函数f(x)满足f(x)•f(x+2)=13,则f(x)的一个周期为4.

分析 利用题中条件:“f(x)•f(x+2)=13”得出f(x+4)=f(x),结合函数周期性的定义可知函数f(x)是周期函数.

解答 解:∵f(x)•f(x+2)=13
∴f(x+2)•f(x+4)=13,
∴f(x+4)=f(x),
∴f(x)是一个周期为4的周期函数,
故答案为:4.

点评 本题主要考查了抽象函数及其应用,考查分析问题和解决问题的能力,属于中档题.函数的周期性是高考函数题的重点考查内容,几个重要的周期公式要熟悉,如:(1)f(x+a)=f(x-a),则T=2a;(2)f(x+a)=-$\frac{1}{f(x)}$,则T=2a等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若A={y|y=2x},B={y|y=x2},则A∪B=[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知{an}是一个无穷等比数列,公比为q.将数列{an}中的前k项去掉,剩余各项组成一个新的数列,这个新数列是等比数列吗?如果是,它的首项与公比分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四边形ABCD中,BC=6,AD=CD=4,∠A+∠C=π,记△BCD,△ABD的面积分别为S1,S2,求S1-S2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=ax2+ax-1在R上恒满足f(x)<0,则a的取值范围是(-4,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,内角A、B、C的对边分别为a,b,c,已知a2tanB=b2tanA.
(1)试判断△ABC的形状;
(2)若sin2C=sin2A+sin2B+$\frac{2}{3}$sinAsinB,求cos(2A-$\frac{π}{6}$)的值;
(3)是否存在△ABC,使cos2A+cos2B+cos2C=1,若存在,求出所有满足条件的A值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.关于x的一元二次方程3x2-5ax+2a=0的两个根x1和x2分别满足0<x1<1,x2>2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若a=2x,b=$\sqrt{x}$,c=log${\;}_{\frac{1}{2}}$x,则“x>1”是“a>b>c”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.四边形ABCD中,已知:$\overrightarrow{AB}$=(6,1),$\overrightarrow{BC}$=(x,y),(x>0),$\overrightarrow{CD}$=(-2,-3)
(1)若$\overrightarrow{BC}$∥$\overrightarrow{DA}$,求x与y之间的关系式;
(2)若在(1)的条件下,由又有$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,求$\overrightarrow{AC}$•$\overrightarrow{AD}$的值.

查看答案和解析>>

同步练习册答案