精英家教网 > 高中数学 > 题目详情

若函数f(x)、g(x)在区间[a,b]上可导,且f′(x)>g′(x),f(a)=g(a),则在[a,b]上有


  1. A.
    f(x)<g(x)
  2. B.
    f(x)>g(x)
  3. C.
    f(x)≥g(x)
  4. D.
    f(x)≤g(x)
C
分析:比较大小常用方法就是作差,构造函数F(x)=f(x)-g(x),研究F(x)在给定的区间[a,b]上的单调性,F(x)在给定的区间[a,b]上是增函数从而F(x)≥F(x)min
解答:设F(x)=f(x)-g(x),则F(a)=f(a)-g(a)=0.
F′(x)=f′(x)-g′(x)>0,
∴F(x)在给定的区间[a,b]上是增函数.
∴当x≥a时,F(x)≥F(a),
即f(x)-g(x)≥0,f(x)≥g(x),
故选C
点评:本题综合考查了利用导数研究函数的单调性,利用作差法比较大小关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+ax和g(x)=x-a.其中a∈R且a≠0.
(Ⅰ)若函数f(x)与g(x)的图象的一个公共点恰好在x轴上,求a的值;
(Ⅱ)若函数f(x)与g(x)图象相交于不同的两点A、B,O为坐标原点,试问:△OAB的面积S有没有最值?如果有,求出最值及所对应的a的值;如果没有,请说明理由.
(Ⅲ)若p和q是方程f(x)-g(x)=0的两根,且满足0<p<q<
1a
,证明:当x∈(0,p)时,g(x)<f(x)<p-a.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)与g(x)=2-x互为反函数,则f(x2)的单调递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福州模拟)已知函数f(x)=-x2+2lnx.
(Ⅰ)求函数f(x)的最大值;
(Ⅱ)若函数f(x)与g(x)=x+
a
x
有相同极值点,
(i)求实数a的值;
(ii)若对于“x1,x2∈[
1
e
,3],不等式
f(x1)-g(x2)
k-1
≤1恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+ax和g(x)=x-a.其中a∈R且a≠0.
(1)若函数f(x)与g(x)的图象的一个公共点恰好在x轴上,求a的值;
(2)若函数f(x)与g(x)图象相交于不同的两点A、B,O为坐标原点,试问:△OAB的面积S有没有最值?如果有,求出最值及所对应的a的值;如果没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x),g(x)分别为R上的奇函数、偶函数,且满足f(x)-g(x)=πx,请将f(3),f(4),g(0)按从大到小的顺序排列
 

查看答案和解析>>

同步练习册答案