精英家教网 > 高中数学 > 题目详情
已知直线l的参数方程为
x=1-
3
2
t
y=3+
1
2
t
(t为参数),则直线l的倾斜角为(  )
A、30°B、60°
C、120°D、150°
分析:把参数方程化为普通方程,求出直线的斜率,据倾斜角和斜率的关系求出倾斜角的大小即可.
解答:解:∵直线l的参数方程为
x=1-
3
2
t
y=3+
1
2
t
(t为参数),
∴消去参数t得y=-
3
3
x+3+
3
3
,则直线的斜率为-
3
3

设直线的倾斜角为 α,tanα=-
3
3
,又 0≤α<180°,
∴α=150°.
故选:D.
点评:本题考查把参数方程化为普通方程的方法,直线的斜率和倾斜角的关系,斜率和倾斜角的求法.考查计算能力.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

C选修4-4:坐标系与参数方程已知直线l的参数方程:
x=2t
y=1+4t
(t为参数),曲线C的极坐标方程:ρ=2
2
sin(θ+
π
4
),求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

极坐标与参数方程:
已知直线l的参数方程是:
x=2t
y=1+4t
(t为参数),圆C的极坐标方程是:ρ=2
2
sin(θ+
π
4
),试判断直线l与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程为
x=
1
2
t
y=2+
3
2
t
(t为参数),曲线C的极坐标方程是ρ=
sinθ
1-sin2θ
以极点为原点,极轴为x轴正方向建立直角坐标系,点M(0,2),直线l与曲线C交于A,B两点.
(1)写出直线l的普通方程与曲线C的直角坐标方程;
(2)线段MA,MB长度分别记|MA|,|MB|,求|MA|•|MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题) 已知直线l的参数方程为
x=
2
2
t
y=1+
2
2
t
(t为参数),圆C的参数方程为
x=cosθ+2
y=sinθ
(θ为参数),则圆心C到直线l的距离为
3
2
2
3
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•香洲区模拟)已知直线L的参数方程为:
x=t
y=a+
3
t
(t为参数),圆C的参数方程为:
x=sinθ
y=cosθ+1
(θ为参数).若直线L与圆C有公共点,则常数a的取值范围是
[-1,3]
[-1,3]

查看答案和解析>>

同步练习册答案