14£®ÒÑÖª¼¯ºÏA={a1£¬a2£¬a3£¬¡­am}£¬D={a1£¬a2£¬a3£¬¡­an}£¬ÇÒn£¾m£¬¸ø³öÏÂÁÐÃüÌâ
¢ÙÂú×ãA⊆C⊆DµÄ¼¯ºÏCµÄ¸öÊýΪ2n-m£»
¢ÚÂú×ãA?C⊆DµÄ¼¯ºÏCµÄ¸öÊýΪ2n-m-1£»
¢ÛÂú×ãA⊆C?DµÄ¼¯ºÏCµÄ¸öÊýΪ2n-m-1£»
¢ÜÂú×ãA?C?DµÄ¼¯ºÏCµÄ¸öÊýΪ2n-m-2£®
ÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®¢Ù¢ÛB£®¢Ú¢ÛC£®¢Ù¢ÜD£®¢Ú¢Û

·ÖÎö ¢ÙÂú×ãA⊆C⊆DµÄ¼¯ºÏCÖаüº¬¼¯ºÏAµÄËùÓÐÔªËØ£¬¼¯ºÏD-AÖÐÓÐn-m¸öÔªËØ£¬Æä×Ó¼¯ÓÐ2n-m¸ö£¬¼´¿ÉµÃ³öÂú×ãÌõ¼þµÄ¼¯ºÏ¸öÊýΪ2n-m£¬¼´¿ÉÅжϳöÕýÎó£»
¢ÚÓÉ¢Ù¿ÉÖª£ºÂú×ãÌõ¼þµÄ¼¯ºÏ¸öÊýΪ2n-m-1£¬¼´¿ÉÅжϳöÕýÎó£»
¢ÛÓÉ¢Ù¿ÉÖª£ºÂú×ãA⊆C?DµÄ¼¯ºÏCµÄ¸öÊýΪ2n-m-1£¬¼´¿ÉÅжϳöÕýÎó£»
¢ÜÂú×ãA?C?DµÄ¼¯ºÏCµÄ¸öÊýΪ2n-m-2£¬¼´¿ÉÅжϳöÕýÎó£®

½â´ð ½â£º¢ÙÂú×ãA⊆C⊆DµÄ¼¯ºÏCÖаüº¬¼¯ºÏAµÄËùÓÐÔªËØ£¬¼¯ºÏD-AÖÐÓÐn-m¸öÔªËØ£¬Æä×Ó¼¯ÓÐ2n-m¸ö£¬Òò´ËÂú×ãÌõ¼þµÄ¼¯ºÏ¸öÊýΪ2n-m£¬ÕýÈ·£»
¢ÚÂú×ãA?C⊆DµÄ¼¯ºÏCµÄ¸öÊýΪ2n-m-1£¬ÓÉ¢Ù¿ÉÖª£ºÂú×ãÌõ¼þµÄ¼¯ºÏ¸öÊýΪ2n-m-1£¬Òò´Ë²»ÕýÈ·£»
¢ÛÂú×ãA⊆C?DµÄ¼¯ºÏCµÄ¸öÊýΪ2n-m-1£¬ÕýÈ·£»
¢ÜÂú×ãA?C?DµÄ¼¯ºÏCµÄ¸öÊýΪ2n-m-2£¬²»ÕýÈ·£¬Ó¦¸ÃΪ2n-m-2£®
ÆäÖÐÕýÈ·µÄÊÇ¢Ù¢Û£®
¹ÊÑ¡£ºA£®

µãÆÀ ±¾Ì⿼²éÁ˼¯ºÏµÄÔËËãÐÔÖʼ°Æä×Ó¼¯µÄ¸öÊý¼ÆË㣬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªf£¨$\frac{x}{2}$-3£©=3x-2£¬ÇÒf£¨m£©=7£¬Ôòm=-$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®±È½ÏÏÂÁи÷×éÊýµÄ´óС£º
$£¨\frac{2}{5}£©^{-\frac{1}{2}}$£¼$£¨0.4£©^{-\frac{3}{2}}$£»                   
$£¨\frac{\sqrt{3}}{3}£©^{0.76}$£¼$£¨\sqrt{3}£©^{-0.75}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=x-xlnx£¬g£¨x£©=ax2£¨lnx-$\frac{1}{2}$£©£®
£¨¢ñ£©ÇóÇúÏßy=f£¨x£©Ôڵ㣨e£¬f£¨e£©£©´¦µÄÇÐÏß·½³Ì£¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£¬e=2.718¡­£©£»
£¨¢ò£©Èôº¯ÊýF£¨x£©=f£¨x£©+g£¨x£©£¬ÇóF£¨x£©µÄµ¥µ÷Çø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªº¯Êýf£¨x£©Âú×ãf£¨x+1£©=-f£¨x£©£¬ÇÒf£¨x£©ÊÇżº¯Êý£¬µ±x¡Ê[0£¬1]ʱ£¬f£¨x£©=x2£¬ÈôÔÚÇø¼ä[-1£¬3]ÄÚ£¬º¯Êýg£¨x£©=f£¨x£©-kÓÐ4¸öÁãµã£¬ÔòʵÊýkµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[$\frac{1}{4}$£¬$\frac{1}{3}$£©B£®£¨0£¬$\frac{1}{2}$£©C£®£¨0£¬1£©D£®£¨$\frac{1}{3}$£¬$\frac{1}{2}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®º¯Êýy=$\frac{2{x}^{2}+2x+1}{{x}^{2}+x+1}$µÄÈ¡Öµ·¶Î§Îª[-$\frac{2}{5}$£¬2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=-x2+2x+t£¬x¡Ê[t£¬t+1]£®
£¨1£©Çóº¯Êýf£¨x£©µÄ×î´óÖµ£»
£¨2£©Èôº¯Êýf£¨x£©µÄ×î´óֵΪ1£¬ÇótµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÍÖÔ²M£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$¶ÌÖ᳤Ϊ2$\sqrt{3}$£¬×ó¡¢ÓÒ¶¥µã·Ö±ðΪA¡¢B£¬FΪ×󽹵㣬ÇÒAF£ºFB=1£º3£¬¾­¹ýFµÄÖ±ÏßlÓëÍÖÔ²M½»ÓÚC¡¢DÁ½µã£®           
£¨1£©ÇóÍÖÔ²MµÄ±ê×¼·½³Ì£»
£¨2£©¼Ç¡÷ABD¡¢¡÷ABCµÄÃæ»ý·Ö±ðΪS1¡¢S2£¬µ±|S1-S2|=$\frac{3}{2}$ʱ£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®»¯¼ò£º£¨$\frac{\sqrt{{x}^{3}}-\sqrt{{a}^{3}}}{\sqrt{x}-\sqrt{a}}$+$\sqrt{ax}$£©£¨$\frac{\sqrt{x}-\sqrt{a}}{x-a}$£©2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸