精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象如图所示,则下列说法正确的是( )

A. 函数的周期为

B. 函数上单调递增

C. 函数的图象关于点对称

D. 把函数的图象向右平移个单位,所得图象对应的函数为奇函数

【答案】C

【解析】分析:先根据图像求出函数的解析式为,再利用函数的图像和性质逐一分析选项的正误得解.

详解:由题得A=2,因为

因为,所以

因为

k=1时,w=2,所以.

对于选项A,由于,所以选项A是错误的.

对于选项B,从图像可以看出与点相邻的左边的最高点坐标为,所以函数上是非单调的,所以选项B是错误的.

对于选项C,,所以函数的图象关于点对称,所以选项C是正确的.

对于选项D,把函数的图像向右平移个单位,所得图象对应的函数为不是奇函数,所以选项D是错误的.

故答案为:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设n是正整数,r为正有理数.
(1)求函数f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;
(参考数据:
(2)证明:
(3)设x∈R,记[x]为不小于x的最小整数,例如 .令 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年北京市进行人口抽样调查,随机抽取了某区居民人,记录他们的年龄,将数据分成组:,并整理得到如下频率分布直方图:

(Ⅰ)从该区中随机抽取一人,估计其年龄不小于的概率;

(Ⅱ)估计该区居民年龄的中位数(精确到);

(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,估计该区居民的平均年龄.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知锐角的外接圆的半径为1,,则的面积的取值范围为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为 ,中奖可以获得2分;方案乙的中奖率为 ,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为x,求x≤3的概率;
(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k,(k>0)

(1)求证:CD⊥平面ADD1A1
(2)若直线AA1与平面AB1C所成角的正弦值为 ,求k的值
(3)现将与四棱柱ABCD﹣A1B1C1D1形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为f(k),写出f(k)的解析式.(直接写出答案,不必说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知,函数

(I)当为何值时, 取得最大值?证明你的结论;

(II) 上是单调函数,求的取值范围;

(III)设,当时, 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.

(1)求证:AA1⊥平面ABC;
(2)求证二面角A1﹣BC1﹣B1的余弦值;
(3)证明:在线段BC1上存在点D,使得AD⊥A1B,并求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fn(x)=﹣1+x+ + +…+ (x∈R,n∈N+),证明:
(1)对每个n∈N+ , 存在唯一的x∈[ ,1],满足fn(xn)=0;
(2)对于任意p∈N+ , 由(1)中xn构成数列{xn}满足0<xn﹣xn+p

查看答案和解析>>

同步练习册答案