精英家教网 > 高中数学 > 题目详情

【题目】为了了解某地区某种农产品的年产量(单位:吨)对价格(单位:千元/吨)和利润的影响对近五年该农产品的年产量和价格统计如下表

参考公式: .

根据参考公式以求得

1)求关于的线性回归方程

2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润取到最大值?(保留两位小数)

【答案】(1) ;(2) 当时,年利润最大.

【解析】试题分析(1)由表中的数据根据平均值公式分别计算 即可得到样本中心点的坐标,结合,将样本中心的点坐标代入回归方程可得从而可写出线性回归方程;2由线性回归方程,可得 利用二次函数的性质可得结果.

试题解析:(1)由已知,得

由已知,∴.

所以,回归直线方程为.

(2)∵ .

∴当时,年利润最大.

【方法点晴】本题主要考查线性回归方程的求法与应用,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为; 回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱猪ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,A1A=AB=2,E为棱AA1的中点.

(1)证明:B1C1⊥CE;
(2)求二面角B1﹣CE﹣C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数x R , e 为自然对数的底数).

判断函数 f x 的单调性与奇偶性;

⑵是否存在实数 t 使不等式对一切的 x R 都成立若存在,求出 t 的值 不存在说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在x轴正半轴上的圆C与直线相切,与y轴交于MN两点,且

求圆C的标准方程;

过点的直线l与圆C交于不同的两点DE,若时,求直线l的方程;

已知Q是圆C上任意一点,问:在x轴上是否存在两定点AB,使得?若存在,求出AB两点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的上下两个焦点分别为 ,过点轴垂直的直线交椭圆两点, 的面积为,椭圆的离心力为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知为坐标原点,直线 轴交于点,与椭圆交于 两个不同的点,若存在实数,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆直线.

(1)求证: 直线与圆总有两个不同的交点

(2)设与圆交于不同的两点求弦中点的轨迹方程

(3)若点分弦所得的向量满足求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)求证:当时,

(Ⅲ)若对任意恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有4人去旅游,旅游地点有A,B两个地方可以选择,但4人都不知道去哪里玩,于是决定通过掷一枚质地均匀的骰子决定自己去哪里玩,掷出能被3整除的数时去A地,掷出其他的则去B地.
(1)求这4个人恰好有1个人去A地的概率;
(2)用X,Y分别表示这4个人中去A,B两地的人数,记ξ=XY,求随机变量ξ的分布列与数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且处取得极值.

(1)求函数的解析式;

(2)设函数,是否存在实数,使得曲线轴有两个交点,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案