【题目】某校进行文科、理科数学成绩对比,某次考试后,各随机抽取100名同学的数学考试成绩进行统计,其频率分布表如下.
(Ⅰ)根据数学成绩的频率分布表,求理科数学成绩的中位数的估计值;(精确到0.01)
(Ⅱ)请填写下面的列联表,并根据列联表判断是否有90%的把握认为数学成绩与文理科有关:
参考公式与临界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
科目:高中数学 来源: 题型:
【题目】下列命题:
①若是定义在上的偶函数,且在上是增函数,,则;
②若锐角、满足c,则;
③若,则对恒成立;
④要得到的图像,只需将的图像向右平移个单位:
其中真命题的个数有( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某投资公司计划投资,两种金融产品,根据市场调查与预测,产品的利润与投资金额的函数关系为,产品的利润与投资金额的函数关系为.(注:利润与投资金额单位:万元)
(1)该公司已有100万元资金,并全部投入,两种产品中,其中万元资金投入产品,试把,两种产品利润总和表示为的函数,并写出定义域;
(2)试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?
【答案】(1);(2)20,28.
【解析】
(1)设投入产品万元,则投入产品万元,根据题目所给两个产品利润的函数关系式,求得两种产品利润总和的表达式.(2)利用基本不等式求得利润的最大值,并利用基本不等式等号成立的条件求得资金的分配方法.
(1)其中万元资金投入产品,则剩余的(万元)资金投入产品,
利润总和为: ,
(2)因为,
所以由基本不等式得:,
当且仅当时,即:时获得最大利润28万.
此时投入A产品20万元,B产品80万元.
【点睛】
本小题主要考查利用函数求解实际应用问题,考查利用基本不等式求最大值,属于中档题.
【题型】解答题
【结束】
20
【题目】已知曲线.
(1)求曲线在处的切线方程;
(2)若曲线在点处的切线与曲线相切,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三年级50名学生参加数学竞赛,根据他们的成绩绘制了如图所示的频率分布直方图,已知分数在的矩形面积为,
求:分数在的学生人数;
这50名学生成绩的中位数精确到;
若分数高于60分就能进入复赛,从不能进入复赛的学生中随机抽取两名,求两人来自不同组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为了改善居民的休闲娱乐活动场所,现有一块矩形草坪如下图所示,已知:米,米,拟在这块草坪内铺设三条小路、和,要求点是的中点,点在边上,点在边时上,且.
(1)设,试求的周长关于的函数解析式,并求出此函数的定义域;
(2)经核算,三条路每米铺设费用均为元,试问如何设计才能使铺路的总费用最低?并求出最低总费用.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com