精英家教网 > 高中数学 > 题目详情
9.函数y=cosx-(sinx)2+2的值域为(  )
A.[1,3]B.[$\frac{1}{2}$,$\frac{11}{4}$]C.[$\frac{3}{4}$,3]D.[$\frac{3}{4}$,$\frac{11}{4}$]

分析 化简为同名函数,通过三角函数的有界性,转化函数为二次函数,求出值域即可.

解答 解:函数y=cosx-(sinx)2+2,
化简可得:y=1+cos2x+cosx=(cosx+$\frac{1}{2}$)2$-\frac{1}{4}$+1
当cosx=$\frac{1}{2}$时,函数y取值最小值为$\frac{3}{4}$.
当cosx=1时,函数y取值最大值为3.
∴函数y=cosx-(sinx)2+2的值域为[$\frac{3}{4}$,3].
故选C.

点评 本题考查三角函数的有界性,二次函数的最值,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.在△ABC中,已知a=2,B=60°,c=3,则b=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥A-BECD中,已知底面BECD是平行四边形,且CA=CB=CD=BD=2,AB=AD=$\sqrt{2}$.
(Ⅰ)求证:平面ABD⊥平面BECD;
(Ⅱ)求点E到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,内角A,B,C所对边的长分别为a,b,c,$\overrightarrow{AB}•\overrightarrow{AC}=8$,∠BAC=θ.
(I)若${sin^2}({θ+\frac{π}{4}})+\frac{{\sqrt{3}}}{2}cos2θ=\frac{{1+\sqrt{3}}}{2}$,求三角形的面积;
(II)若a=4,求bc的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列判断错误的是(  )
A.“am2<bm2”是“a<b”的充分不必要条件
B.命题“?x∈R,x2-x-1≤0”的否定是“$?{x_0}∈{R},{x_0}^2-{x_0}-1>0$”
C.若p,q均为假命题,则p∧q为假命题
D.若ζ~B(4,0.25),则Dξ=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.关于函数f(x)=2sin(2x-$\frac{π}{6}$)(x∈R)有下列命题:
(1)有f(x1)=f(x2)=0可得x1-x2是π的整数倍;
(2)表达式可改写为f(x)=2cos(2x-$\frac{2π}{3}$)
(3)函数的图象关于点($\frac{π}{3}$,0)对称;
(4)函数的图象关于直线x=-$\frac{π}{6}$对称;
其中正确的命题序号是(2)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.过点(1,2)且与直线2x+y-10=0垂直的直线方程是x-2y+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x,x≤1}\\{lo{g}_{0.5}x,x>1}\end{array}\right.$若对于任意x∈R,不等式f(x)≤$\frac{{t}^{2}}{4}$-t+1恒成立,则实数t的取值范围是(-∞,1]∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.过点C(0,$\sqrt{2}$)的椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,椭圆与x轴交于两点A(a,0),B(-a,0),过点C的直线l与椭圆交于另一点D,并与x轴交于点P,直线AC与BD交于点Q.
(1)求椭圆的方程;
(2)当直线l过椭圆右焦点时,求线段CD的长;
(3)当点P异于点B时,求证:$\overrightarrow{OP}$•$\overrightarrow{OQ}$为定值.

查看答案和解析>>

同步练习册答案