精英家教网 > 高中数学 > 题目详情
(理)已知函数f(x)=2+
1
a
-
1
a2x
,实数a∈R且a≠0.
(1)设mn>0,判断函数f(x)在[m,n]上的单调性,并说明理由;
(2)设0<m<n且a>0时,f(x)的定义域和值域都是[m,n],求n-m的最大值;
(3)若不等式|a2f(x)|≤2x对x≥1恒成立,求a的范围.
分析:(1)根据函数单调性的定义先设m≤x1<x2≤n,然后判定f(x1)-f(x2)的正负,从而确定函数f(x)在[m,n]上的单调性;
(2)由(1)及f(x)的定义域和值域都是[m,n],则m,n是方程2+
1
a
-
1
a2x
=x
的两个不相等的正数根,等价于方程a2x2-(2a2+a)x+1=0有两个不等的正数根,利用根与系数的关系即可求出n-m的最大值;
(3)a2f(x)=2a2+a-
1
x
,则不等式|a2f(x)|≤2x对x≥1恒成立,令h(x)=2x+
1
x
,易证h(x)在[1,+∞)递增,同理g(x)=
1
x
-2x
[1,+∞)递减,求出函数h(x)min,与函数g(x)max,建立不等关系,解之即可求出a的范围.
解答:解:(1)设m≤x1<x2≤n,则f(x1)-f(x2)=-
1
a2x1
+
1
a2x2
=
x1-x2
a2x1x2

∵mn>0,m≤x1<x2≤n,∴x1x2>0,x1-x2<0,∴f(x1)-f(x2)<0,
即f(x1)<f(x2),因此函数f(x)在[m,n]上的单调递增.
(2)由(1)及f(x)的定义域和值域都是[m,n]得f(m)=m,f(n)=n,
因此m,n是方程2+
1
a
-
1
a2x
=x
的两个不相等的正数根,
等价于方程a2x2-(2a2+a)x+1=0有两个不等的正数根,
△=(2a2+a)2-4a2>0且x1+x2=
2a2+a
a2
>0且x1x2=
1
a2
>0

解得a>
1
2
,∴n-m=
1
a
4a2+4a-3
=
-3(
1
a
-
2
3
)
2
+
16
3

a∈(
1
2
,+∞)
,∴a=
3
2
时,n-m最大值为
4
3
3

(3)a2f(x)=2a2+a-
1
x
,则不等式|a2f(x)|≤2x对x≥1恒成立,
-2x≤2a2+a-
1
x
≤2x
即不等式对x≥1恒成立,
令h(x)=2x+
1
x
,易证h(x)在[1,+∞)递增,同理g(x)=
1
x
-2x
[1,+∞)递减.
∴h(x)min=h(1)=3,g(x)max=g(1)=-1,
2a2+a≤3
2a2+a≥-1
-
3
2
≤a≤1
且a≠0
点评:本题主要考查了函数单调性的判断与证明,以及函数恒成立问题和不等式的综合,同时考查了转化与划归的思想,属于综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网精英家教网(理)已知函数f(x)=
ln(2-x2)
|x+2|-2

(1)试判断f(x)的奇偶性并给予证明;
(2)求证:f(x)在区间(0,1)单调递减;
(3)如图给出的是与函数f(x)相关的一个程序框图,试构造一个公差不为零的等差数列
{an},使得该程序能正常运行且输出的结果恰好为0.请说明你的理由.
(文)如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)求证:F<0;
(2)若四边形ABCD的面积为8,对角线AC的长为2,且
AB
AD
=0
,求D2+E2-4F的值;
(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判
断点O、G、H是否共线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=
sin2x-(a-4)(sinx-cosx)+a
的定义域为{x|2kπ≤x≤2kπ+
π
2
,k∈Z}
,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•普陀区三模)(理)已知函数f(x)=
sinπxx∈[0,1]
log2011xx∈(1,+∞)
若满足f(a)=f(b)=f(c),(a、b、c互不相等),则a+b+c的取值范围是
(2,2012)
(2,2012)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•普陀区三模)(理)已知函数f(x)=
ln(2-x2)|x+2|-2

(1)试判断f(x)的奇偶性并给予证明;
(2)求证:f(x)在区间(0,1)单调递减;
(3)右图给出的是与函数f(x)相关的一个程序框图,试构造一个公差不为零的等差数列{an},使得该程序能正常运行且输出的结果恰好为0.请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•嘉定区一模)(理)已知函数f(x)=log2
2
x
1-x
,P1(x1,y1)、P2(x2,y2)是f(x)图象上两点.
(1)若x1+x2=1,求证:y1+y2为定值;
(2)设Tn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求Tn关于n的解析式;
(3)对(2)中的Tn,设数列{an}满足a1=2,当n≥2时,an=4Tn+2,问是否存在角a,使不等式(1-
1
a1
)(1-
1
a2
)
(1-
1
an
)<
sinα
2n+1
对一切n∈N*都成立?若存在,求出角α的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案