解答:解:由于函数
g(x)=f(x)+,可得x≠0,因而 g(x)的零点跟 xg(x)的非零零点是完全一样的,
故我们考虑 xg(x)=xf(x)+1 的零点.
由于当x≠0时,
f′(x)+>0,
①当x>0时,(x•g(x))′=(xf(x))′=xf′(x)+f(x)=x( f′(x)+
)>0,
所以,在(0,+∞)上,函数x•g(x)单调递增函数.
又∵
[xf(x)+1]=1,∴在(0,+∞)上,函数 x•g(x)=xf(x)+1>1恒成立,
因此,在(0,+∞)上,函数 x•g(x)=xf(x)+1 没有零点.
②当x<0时,由于(x•g(x))′=(xf(x))′=xf′(x)+f(x)=x( f′(x)+
)<0,
故函数 x•g(x)在(-∞,0)上是递减函数,函数 x•g(x)=xf(x)+1>1恒成立,
故函数 x•g(x)在(-∞,0)上无零点.
综上可得,函
g(x)=f(x)+在R上的零点个数为0,
故选C.