精英家教网 > 高中数学 > 题目详情
已知y=f(x)为R上的可导函数,当x≠0时,f′(x)+
f(x)
x
>0
,则关于x的函数g(x)=f(x)+
1
x
的零点个数为(  )
分析:由题意可得,x≠0,因而 g(x)的零点跟 xg(x)的非零零点是完全一样的.当x>0时,利用导数的
知识可得xg(x)在(0,+∞)上是递增函数,xg(x)>1恒成立,可得xg(x)在(0,+∞)上无零点.
同理可得xg(x)在(-∞,0)上也无零点,从而得出结论.
解答:解:由于函数g(x)=f(x)+
1
x
,可得x≠0,因而 g(x)的零点跟 xg(x)的非零零点是完全一样的,
故我们考虑 xg(x)=xf(x)+1 的零点.
由于当x≠0时,f′(x)+
f(x)
x
>0

①当x>0时,(x•g(x))′=(xf(x))′=xf′(x)+f(x)=x( f′(x)+
f(x)
x
)>0,
 所以,在(0,+∞)上,函数x•g(x)单调递增函数.
又∵
lim
x→0
[xf(x)+1]=1,∴在(0,+∞)上,函数 x•g(x)=xf(x)+1>1恒成立,
因此,在(0,+∞)上,函数 x•g(x)=xf(x)+1 没有零点.
②当x<0时,由于(x•g(x))′=(xf(x))′=xf′(x)+f(x)=x( f′(x)+
f(x)
x
)<0,
故函数 x•g(x)在(-∞,0)上是递减函数,函数 x•g(x)=xf(x)+1>1恒成立,
故函数 x•g(x)在(-∞,0)上无零点.
综上可得,函g(x)=f(x)+
1
x
在R上的零点个数为0,
故选C.
点评:本题考查了根的存在性及根的个数判断,导数与函数的单调性的关系,体现了分类讨论、转化的思想,
属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知y=f(x)为R上的连续可导的函数,当x≠0时,f(x)+
f(x)
x
>0
,则关于x的方程f(x)+
1
x
=0
的根的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)为R奇函数,当x≥0时f(x)=
3x+1
,则当x<0时,则f(x)=
-
3-x+1
-
3-x+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)为R上可导函数,当x≠0时,f′(x)+
f(x)x
>0
则关于x的函数g(x)=xf(x)+1的零点个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)为R上的可导函数,当x≠0时,f′(x)+
f(x)
x
>0
,则关于x的函数g(x)=f(x)+
1
x
的零点个数为
 

查看答案和解析>>

同步练习册答案