精英家教网 > 高中数学 > 题目详情
1.为调查某地区高三学生是否需要心理疏导,用简单随机抽样方法从该校调查了500位高三学生,结果如下:
 
需要4030
不需要160270
(Ⅰ)估计该地区高三学生中,需要心理疏导的高三学生的百分比;
(Ⅱ)能否有99%的把握认为该地区高三学生是否需要心理疏导与性别有关?
(Ⅲ)根据(Ⅱ)的结论,能否提出更好的抽样方法来调查估计该地区高三学生中,需要提供心理疏导的高三学生的比例?请说明理由.
附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
P(K2≥k00.050.0250.0100.001
k03.8415.0246.63510.828

分析 (Ⅰ)由列联表可知调查的500位老年人中有40+30=70位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值.
(Ⅱ)根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关.
(Ⅲ)从样本数据老年人中需要帮助的比例有明显差异,调查时,可以先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.

解答 解:(Ⅰ)∵调查的500位老年人中有40+30=70位需要志愿者提供帮助,
∴该地区老年人中需要帮助的老年人的比例的估算值为$\frac{70}{500}$=14%.
(Ⅱ)根据列联表所给的数据,代入随机变量的观测值公式,
k2=$\frac{500×(40×270-30×160)^{2}}{×300×70×430}$≈9.967.
∵9.967>6.635,
∴有99%的把握认为该地区的老年人是否需要帮助与性别有关.
(Ⅲ)由(Ⅱ)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.

点评 本题主要考查统计学知识,考查独立性检验的思想,考查利用数学知识研究实际问题的能力以及相应的运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在对人们休闲方式的一次调查中,共调查了50人,其中女性25人,男性25人,女性中20人主要的休闲方式是看电视,另外5人主要的休闲方式是运动,男性中有10人主要的休闲方式是看电视,另外5人主要的休闲方式是运动,2×2列联表如下:
  看电视运动  合计
 女性 2025 
 男性 10 15 25
 合计 30 20 50
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中(n=a+b+c+d)
附表:独立性检验临界值如下:
 P(K2≥k00.05 0.025 0.010 0.005 0.001 
 k0 3.84 5.0246.635 7.879 10.83 
参照附表,得到的正确结论是(  )
A.有99.5%以上的把握认为“休闲方式与性别有关”
B.有99.5%以上的把握认为“休闲方式与性别无关”
C.在犯错误的概率不超过0.1%的前提下,认为“休闲方式与性别有关”
D.在犯错误的概率不超过0.1%的前提下,认为“休闲方式与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数y=cos(ωx+φ)(ω>0)的部分图象如图,则ω=(  )
A.2B.4C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线y2=2px(p>0)经过点M(2,4),其焦点为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点,椭圆的离心率e=$\frac{1}{2}$.
(1)求这两条曲线的标准方程;
(2)过椭圆的左焦点作抛物线的切线l,求切线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.观察$\frac{1}{2}$=$\frac{1}{2}$;$\frac{1}{2}$+$\frac{1}{6}$=$\frac{2}{3}$;$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$=$\frac{3}{4}$;…,由此推算$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$=$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,角A,B,C所对的边分别为a,b,c,且a=10,b=8,B=30°,那么△ABC的解的情况是(  )
A.无解B.一解C.两解D.一解或两解

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=mx2-(m2+1)x+m(m∈R).
(Ⅰ)当m=2时,解关于x的不等式f(x)≤0;
(Ⅱ)当m>0时,解关于x的不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等差数列{bn},等比数列{an}(q≠1),且a1=b1=3,a2=b4,a3=b13
(1)求:通项公式an,bn
(2)令cn=anbn,求{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.是否存在实数m与钝角θ,使sinθ与sin(θ-$\frac{π}{3}$)是关于x的方程2x2-3x+m=0的两个实根?若不存在,请说明理由;若存在,求出m与θ的值.

查看答案和解析>>

同步练习册答案