精英家教网 > 高中数学 > 题目详情
设a>0,b>0,则下面不等式中不恒成立的是(  )
A、
1
a
+
1
b
4
a+b
B、a2+b2+1>a+b
C、
|a-b|
a
-
b
D、
2
1
a
+
1
b
ab
分析:根据基本不等式的性质可知,(a+b)(
1
a
+
1
b
)≥4,排除A;
a2+b2+1-(a+b)=(a-
1
2
2+(b-
1
2
2+
1
2
>0,排除B;
分a<b和a≥b,两种情况讨论可得
|a-b|
a
-
b
恒成立,排除C;
举出反例a=1,b=2,可判断D中不等式
2
1
a
+
1
b
ab
不恒成立
解答:解:∵a>0,b>0,
∴(a+b)(
1
a
+
1
b
)=2+(
b
a
+
a
b
)≥2+2=4,
故A中
1
a
+
1
b
4
a+b
不等式恒成立;
a2+b2+1-(a+b)=(a-
1
2
2+(b-
1
2
2+
1
2
>0恒成立,
故C中不等式a2+b2+1>a+b恒成立;
若a<b,则
|a-b|
a
-
b
恒成立
若a≥b,则(
|a-b|
2-(
a
-
b
2=2
ab
≥0,
故C中不等式
|a-b|
a
-
b
恒成立.
当a=1,b=2时,
2
1
a
+
1
b
=
4
3
ab
=
2

此时
2
1
a
+
1
b
ab
不成立.
故选:D.
点评:本题主要考查了基本不等式问题.考查了学生对基础知识的掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a>0,b>0,则以下不等式中不恒成立的是(  )
A、(a+b)(
1
a
+
1
b
)
≥4
B、a3+b3≥2ab2
C、a2+b2+2≥2a+2b
D、
|a-b|
a
-
b

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,b>0,则以下不等式中不一定成立的是(  )
A、
a
b
+
b
a
≥2
B、ln(ab+1)>0
C、a2+b2+2≥2a+2b
D、a3+b3≥2ab2

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,b>0,则下列不等式中正确的有几个(  )
(1)a2+1>a;
(2)(a+
1
a
)(b+
1
b
)≥4;
(3)(a+b)(
1
a
+
1
b
)≥4;
(4)a2+9>6a;
(5)a2+1+
1
a2+1
>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,b>0,则下列不等式中不恒成立的是(  )

查看答案和解析>>

同步练习册答案