解答:解:(1)证明:连结AC,∵四边形ABCD是矩形,N为BD中点,
∴N为AC中点,----------------------------------------------(1分)
在△ACF中,M为AF中点,故MN∥CF--------------------------(3分)
∵CF?平面BCF,MN?平面BCF,∴MN∥平面BCF;---(4分)
(2)依题意知DA⊥AB,DA⊥AE 且AB∩AE=A∴AD⊥平面ABFE
∵AP?平面ABFE,∴AP⊥AD,------------------(5分)
∵P为EF中点,∴
FP=AB=2结合AB∥EF,知四边形ABFP是平行四边形
∴AP∥BF,AP=BF=2------------------------------------(7分)
而
AE=2,PE=2,∴AP
2+AE
2=PE
2∴∠EAP=90°,即AP⊥AE-----(8分)
又AD∩AE=A∴AP⊥平面ADE,----------------------------------(9分)
(3)∵三棱锥F-CBD与F-ABD等底等高,∴V
F-BCD=V
F-ABD,-----------(10分)
∴V
F-ABCD=2V
F-ABD=2V
D-ABF,-----------------------------------------------(11分)
由(2)知△PAE为等腰直角三角形,∴∠APE=45°,从而∠FBA=∠APF=135°------(12分)
故
S△ABF=AB•BFsin∠ABF=×2×2×=2∴
VD-ABF=S△ABF•DA=×2×2=∴
VF-ABCD=2VD-AEF=--------------------------------------------------(14分)