精英家教网 > 高中数学 > 题目详情
已知非零向量
AB
AC
满足(
AB
|
AB|
+
AC
|
AC|
)•
BC
=0,且
AB
|
AB|
AC
|
AC|
=-
1
2
,则△ABC为(  )
A、等腰非等边三角形
B、等边三角形
C、三边均不相等的三角形
D、直角三角形
分析:利用单位向量的定义及向量的数量积为0两向量垂直,得到等腰三角形;利用向量的数量积求出三角形的夹角,得到非等边三角形.
解答:解:
AB
|
AB|
AC
|
AC|
分别是
AB
AC
方向的单位向量,
向量
AB
|
AB|
+
AC
|
AC|
在∠BAC的平分线上,
由(
AB
|
AB|
+
AC
|
AC|
)•
BC
=0知,AB=AC,
AB
|
AB|
AC
|
AC|
=-
1
2
,可得∠CAB=120°,
∴△ABC为等腰非等边三角形,
故选A.
点评:本题考查单位向量的定义;向量垂直的充要条件;向量数量积的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知非零向量
AB
AC
满足(
AB
|
AB
|
+
AC
|
AC
|
).
BC
=0
AB
|
AB
|
AC
|
AC
|
=
1
2
. 则△ABC为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非零向量
a
b
,定义|
a
×
b
|=|
a
||
b
|sinθ
,其中θ为
a
b
的夹角.若
a
+
b
=(3,-6),
a
-
b
=(3,-2)
,则|
a
×
b
|
=
6
6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知非零向量
AB
AC
满足(
AB
|
AB
|
+
AC
|
AC
|
).
BC
=0
AB
|
AB
|
AC
|
AC
|
=
1
2
. 则△ABC为(  )
A.等边三角形B.直角三角形
C.等腰非等边三角形D.三边均不相等的三角形

查看答案和解析>>

科目:高中数学 来源:陕西 题型:单选题

已知非零向量
AB
AC
满足(
AB
|
AB|
+
AC
|
AC|
)•
BC
=0,且
AB
|
AB|
AC
|
AC|
=-
1
2
,则△ABC为(  )
A.等腰非等边三角形B.等边三角形
C.三边均不相等的三角形D.直角三角形

查看答案和解析>>

同步练习册答案