精英家教网 > 高中数学 > 题目详情
17.如图,在正方体ABCD-A1B1C1D1中,E,F,G,M,N分别是B1C1,A1D1,A1B1,BD,B1C的中点,求证:
(1)MN∥平面CDD1C1
(2)平面EBD∥平面FGA.

分析 (1)连接BC1,DC1,由已知推导出MN$\underset{∥}{=}$$\frac{1}{2}$DC1,由此能证明MN∥平面CDD1C1
(2)连接EF,B1D1,推导出四边形ABEF为平行四边形,从而AF∥BE,由题意FG∥BD,由此能证明平面EBD∥平面FGA.

解答 证明:(1)连接BC1,DC1
∵四边形BCC1B1为正方形,N为B1C的中点,
∴N在BC1上,且N为BC1的中点.
又∵M为BD的中点,∴MN$\underset{∥}{=}$$\frac{1}{2}$DC1
又MN?平面CDD1C1,DC1?平面CDD1C1
∴MN∥平面CDD1C1.(6分)
(2)连接EF,B1D1,则EF$\underset{∥}{=}$AB.
∴四边形ABEF为平行四边形,∴AF∥BE.
又由题意知FG∥B1D1,B1D1∥BD,∴FG∥BD.
又∵AF∩FG=F,BE∩BD=B,
∴平面EBD∥平面FGA.(12分)

点评 本题考查线面平行、面面平行的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数y=$\sqrt{{x}^{2}-2x-3}$的定义域为(  )
A.[-1,3]B.(-∞,-1)∪(3,+∞)C.(-1,3)D.(-∞,-1]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知Sn是数列{an}的前n项和,a1=2,Sn+1=$\frac{1}{2}$Sn+2(n∈N*),则Sn的取值范围是(  )
A.(2,4]B.[2,4)C.[2,4]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2sin(ωx),其中常数ω>0;
(1)若y=f(x)在$[-\frac{π}{4},\frac{2π}{3}]$上单调递增,求ω的取值范围;
(2)令ω=4,将函数y=f(x)的图象向左平移$\frac{π}{12}$个单位,再向上平移1个单位,得到函数y=g(x)的图象,区间[a,b](a,b∈R且a<b)满足:y=g(x)在[a,b]上至少含有20个零点,在所有满足上述条件的[a,b]中,求b-a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线C:y2=2px(p>0)上的点(2,a)到焦点F的距离为3.
(Ⅰ)求抛物线的标准方程;
(Ⅱ)设不过原点O的直线l与该抛物线相交于点P、Q,直线OP、PQ、OQ的斜率满足kOP+kPQ+kOQ=0,且△OPQ的面积为$\sqrt{5}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.幂函数y=f(x)的图象过点$(\frac{1}{2},4)$,那么f(4)的值为$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=x2-ax+a(x∈R),数列$\{a_n^{\;}\}$的前n项和Sn=f(n),且f(x)同时满足:①不等式f(x)≤0的解集有且只有一个元素;②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.
(1)求函数f(x)的表达式;     
(2)求数列$\{a_n^{\;}\}$的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.sin182°cos28°-cos2°sin28°的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设命题p:存在x0∈(-2,+∞),使得6+x0=5.命题q:对任意x∈(-∞,0),x2+$\frac{4}{{x}^{2}}$≥4恒成立.
(1)写出命题p的否定.
(2)判断命题非p,p或q,p且q的真假,并说明理由.

查看答案和解析>>

同步练习册答案