【题目】已知函数(),的部分图象如图所示,且,则( )
A. 6 B. 4 C. -4 D. -6
【答案】D
【解析】分析:利用三角函数恒等变换的应用化简函数解析式可得f(x)=5sin(2ωx﹣φ)﹣1,其中sinφ=,cosφ=,由函数图象可求周期T,由f(x0)=4,利用正弦函数的对称性可求sin[2ω(x0+1)﹣φ)=﹣1,利用正弦函数的周期性进而可求f(x0+1)的值.
详解:∵f(x)=6sinωxcosωx﹣8cos2ωx+3
=3sin2ωx﹣4cos2ωx﹣1
=5sin(2ωx﹣φ)﹣1,其中sinφ=,cosφ=,
∴设函数f(x)的最小正周期为T,则T=(θ+)﹣θ=,可得:T=2,
∵f(x0)=4,可得:sin(2ωx0﹣φ)=1,即f(x)关于x=x0对称,而x=x0+1与x=x0的距离为半个周期,
∴sin[2ω(x0+1)﹣φ)=﹣1,
∴f(x0+1)=5sin[2ω(x0+1)﹣φ]﹣1=5×(﹣1)﹣1=﹣6.
故选:D.
科目:高中数学 来源: 题型:
【题目】过抛物线E:x2=2py(p>0)的焦点F作斜率率分别为k1 , k2的两条不同直线l1 , l2 , 且k1+k2=2.l1与E交于点A,B,l2与E交于C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.
(1)若k1>0,k2>0,证明: ;
(2)若点M到直线l的距离的最小值为 ,求抛物线E的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某个产品有若干零部件构成,加工时需要经过7道工序,分别记为.其中,有些工序因为是制造不同的零部件,所以可以在几台机器上同时加工;有些工序因为是对同一个零部件进行处理,所以存在加工顺序关系,若加工工序必须要在工序完成后才能开工,则称为的紧前工序.现将各工序的加工次序及所需时间(单位:小时)列表如下:
工序 | |||||||
加工时间 | 3 | 4 | 2 | 2 | 2 | 1 | 5 |
紧前工序 | 无 | 无 |
现有两台性能相同的生产机器同时加工该产品,则完成该产品的最短加工时间是( )
(假定每道工序只能安排在一台机器上,且不能间断.)
A. 11个小时 B. 10个小时 C. 9个小时 D. 8个小时
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某设计师设计的型饰品的平面图,其中支架,,两两成,,,且.现设计师在支架上装点普通珠宝,普通珠宝的价值为,且与长成正比,比例系数为(为正常数);在区域(阴影区域)内镶嵌名贵珠宝,名贵珠宝的价值为,且与的面积成正比,比例系数为.设,.
(1)求关于的函数解析式,并写出的取值范围;
(2)求的最大值及相应的的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,墙上有一壁画,最高点离地面4米,最低点离地面2米,观察者从距离墙米,离地面高米的处观赏该壁画,设观赏视角
(1)若问:观察者离墙多远时,视角最大?
(2)若当变化时,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com