【题目】已知抛物线过点,抛物线在处的切线交轴于点,过点作直线与抛物线交于不同的两点、,直线、、分别与抛物线的准线交于点、、,其中为坐标原点.
(Ⅰ)求抛物线的方程及其准线方程,并求出点的坐标;
(Ⅱ)求证:为线段的中点.
【答案】(Ⅰ)抛物线的方程为,准线方程为,;(Ⅱ)证明见解析.
【解析】
(Ⅰ)将点的坐标代入抛物线的方程,求出的值,可得出抛物线的方程,并可求出抛物线的准线方程,求出切线的方程,进而可求得点的坐标;
(Ⅱ)设直线的方程为,与抛物线的交点为、,将直线的方程与抛物线的方程联立,列出韦达定理,求出点的坐标,并求出点、的坐标,进而求出线段的中点坐标,由此可证得结论成立.
(Ⅰ)由抛物线过点,得,
所以抛物线的方程为,准线方程为.
设切线的方程为,
由,得,
则,
从而的方程为,得;
(Ⅱ)设直线的方程为,与抛物线的交点为、.
由,得,则,.
因为点的坐标为,所以点的坐标为,
直线的方程为,结合,从而直线,
可得点的坐标为,同理点的坐标为.
因为,
故为线段的中点.
科目:高中数学 来源: 题型:
【题目】已知椭圆E:(),它的上,下顶点分别为A,B,左,右焦点分别为,,若四边形为正方形,且面积为2.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)设存在斜率不为零且平行的两条直线,,它们与椭圆E分别交于点C,D,M,N,且四边形是菱形,求出该菱形周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,函数g(x)=f(1-x)-kx+k-恰有三个不同的零点,则k的取值范围是( )
A. (-2-,0]∪ B. (-2+,0]∪
C. (-2-,0]∪ D. (-2+,0]∪
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求的图象在处的切线方程;
(2)若函数在上有两个零点,求实数m的取值范围;
(3)若对区间内任意两个不等的实数,,不等式恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,,分别为的中点,,将沿折起,得到四棱锥,为的中点.
(1)证明:平面;
(2)当正视图方向与向量的方向相同时,此时的正视图的面积为,求四棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的右焦点F为抛物线的焦点,点M为和在第一象限的交点,且.
(Ⅰ)求抛物线的标准方程;
(Ⅱ)若,过焦点F的直线l与相交于A,B两点,已知,求取得最大值时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点O为坐标原点,椭圆C:(a>b>0)的左、右焦点分别为F1,F2,离心率为,点I,J分别是椭圆C的右顶点、上顶点,△IOJ的边IJ上的中线长为.
(1)求椭圆C的标准方程;
(2)过点H(-2,0)的直线交椭圆C于A,B两点,若AF1⊥BF1,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C1的参数方程为(其中t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线C2的极坐标方程为.
(1)把曲线C1的方程化为普通方程,C2的方程化为直角坐标方程;
(2)若曲线C1,C2相交于A,B两点,AB的中点为P,过点P做曲线C2的垂线交曲线C1于E,F两点,求|PE||PF|.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com