精英家教网 > 高中数学 > 题目详情

【题目】设函数y=f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),
(1)求f(1)的值;
(2)如果f(x)+f(2﹣x)<2,求x的取值范围.

【答案】
(1)解:令x=y=1,则f(1)=f(1)+f(1),

∴f(1)=0


(2)解:∵

又由y=f(x)是定义在R+上的减函数,得:

解之得:


【解析】(1)利用赋值法:令x=y=1即可求解(2)利用赋值法可得,f( )=2,然后结合f(xy)=f(x)+f(y),转化已知不等式,从而可求
【考点精析】利用函数单调性的性质和函数的值对题目进行判断即可得到答案,需要熟知函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集;函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是空间两条直线, 是空间两个平面,则下列命题中不正确的是( )

A. 时,“”是“”的充要条件

B. 时,“”是“”的充分不必要条件

C. 时,“”是“”的必要不充分条件

D. 时,“”是“”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图平行四边形ABCD中,∠DAB=60°,AB=2,AD=2,M为CD边的中点,沿BM将△CBM折起使得平面BMC⊥平面ABMD.

(1)求四棱锥C﹣ADMB的体积;
(2)求折后直线AB与平面AMC所成的角的正弦.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题: 1)y=|cos(2x+ )|最小正周期为π;
2)函数y=tan 的图象的对称中心是(kπ,0),k∈Z;
3)f(x)=tanx﹣sinx在(﹣ )上有3个零点;
4)若 ,则
其中错误的是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对任意实数x,cos2x+2ksinx﹣2k﹣2<0恒成立,则实数k的取值范围是(
A.
B.
C.
D.k>﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3﹣x2+x.
(1)求函数f(x)在[﹣1,2]上的最大值和最小值;
(2)若函数g(x)=f(x)﹣4x,x∈[﹣3,2],求g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对定义域分别为D1 , D2的函数y=f(x),y=g(x),规定:函数h(x)= ,f(x)=x﹣2(x≥1),g(x)=﹣2x+3(x≤2),则h(x)的单调减区间是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|+|x﹣a|.
(1)若a=2,解不等式f(x)≥2;
(2)已知f(x)是偶函数,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案