【题目】已知函数.
(Ⅰ)若存在使得成立,求实数的取值范围;
(Ⅱ)求证:当时,在(1)的条件下, 成立.
【答案】(Ⅰ) ; (Ⅱ)见解析.
【解析】试题分析: (1)构造函数 ,求出 在 的最小值,从而得到实数的取值范围;(2)设 ,求出 的单调性,得出结论.
(Ⅰ)原题即为存在,使得,
∴,
令,则.
令,解得.
∵当时, ,∴为减函数,
当时, ,∴为增函数,
∴,∴.
∴的取值范围为.
(Ⅱ)原不等式可化为,
令,则,
,
∵,由(Ⅰ)可知, ,
则,
∴在上单调递增,
∴当时, .
∴成立.
即当时, 成立.
点睛: 本题主要考查了导数在求函数的单调性,函数的最值上的应用,属于中档题.考查学生灵活运用导数工具去分析、解决问题的能力,综合考查学生的逻辑思维能力、运算求解能力和推理论证能力以及等价转换的解题思想.
科目:高中数学 来源: 题型:
【题目】已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.
(1)求该抛物线的方程.
(2)O为坐标原点,C为抛物线上一点,若,求λ的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,离心率为,点是椭圆上任意一点, 的周长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点 (-4,0)任作一动直线交椭圆于两点,记,若在线段上取一点,使得,则当直线转动时,点在某一定直线上运动,求该定直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=,椭圆的长半轴与双曲线实半轴之差为4,离心率之比为3∶7.
(1)求这两曲线的方程;
(2)若P为这两曲线的一个交点,求cos∠F1PF2的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示, 是边长为3的正方形, 平面与平面所成角为.
(Ⅰ)求证: 平面;
(Ⅱ)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年9月16日05时,第19号台风“杜苏芮”的中心位于甲地,它以每小时30千米的速度向西偏北的方向移动,距台风中心千米以内的地区都将受到影响,若16日08时到17日08时,距甲地正西方向900千米的乙地恰好受台风影响,则和的值分别为(附: )( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆的离心率为,顶点为,且.
(1)求椭圆的方程;
(2)是椭圆上除顶点外的任意点,直线交轴于点,直线交于点.设的斜率为, 的斜率为,试问是否为定值?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com