精英家教网 > 高中数学 > 题目详情

【题目】设n≥3,n∈N* , 在集合{1,2,…,n}的所有元素个数为2的子集中,把每个子集的较大元素相加,和记为a,较小元素之和记为b.
(1)当n=3时,求a,b的值;
(2)求证:对任意的n≥3,n∈N* 为定值.

【答案】
(1)解:当n=3时,集合{1,2,3}的所有元素个数为2的子集

为{1,2},{1,3},{2,3},

即有a=2+3+3=8,b=1+1+2=4


(2)证明:对任意的n≥3,n∈N* 为定值

运用数学归纳法证明.

当n=3时,由(1)可得a=8,b=4, ,成立;

假设n=k时, 为定值

则n=k+1时,

a'=a+(k+1)k,

b'=b+(1+2+3+…+k)=b+ k(1+k),

由a=2b,

可得a'=2b+k(1+k)=2b',

则n=k+1时,结论仍然成立.

故对任意的n≥3,n∈N* 为定值


【解析】(1)当n=3时一一写出所有符合题意的子集;(2)利用数学归纳法即可证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在R上的函数y=f(x),恒有f(x)=f(2﹣x)成立,且f′(x)(x﹣1)>0,对任意的x1<x2 , 则f(x1)<f(x2)成立的充要条件是( )
A.x2>x1≥1
B.x1+x2>2
C.x1+x2≤2
D.x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(ax﹣1)ex(a≠0,e是自然对数的底数).
(1)若函数f(x)在区间[1,2]上是单调减函数,求实数a的取值范围;
(2)求函数f(x)的极值;
(3)设函数f(x)图象上任意一点处的切线为l,求l在x轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,且a≠1,函数f(x)=ax﹣1,g(x)=﹣x2+xlna.
(1)若a>1,证明函数h(x)=f(x)﹣g(x)在区间(0,+∞)上是单调增函数;
(2)求函数h(x)=f(x)﹣g(x)在区间[﹣1,1]上的最大值;
(3)若函数F(x)的图象过原点,且F′(x)=g(x),当a>e 时,函数F(x)过点A(1,m)的切线至少有2条,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将2张边长均为1分米的正方形纸片分别按甲、乙两种方式剪裁并废弃阴影部分.

(1)在图甲的方式下,剩余部分恰能完全覆盖某圆锥的表面,求该圆锥的母线长及底面半径;
(2)在图乙的方式下,剩余部分能完全覆盖一个长方体的表面,求长方体体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,当x>0时,f(x)=x3+x2
(1)求f(x)在R上的解析式;
(2)当x∈[m,n](0<m<n)时,若f(x)的值域为[3m2+2m﹣1,3n2+2n﹣1],求实数m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线y=ax+2与曲线y=f(x)交于A、B两点,其中A是切点,记h(x)= ,g(x)=f(x)﹣ax,则下列判断正确的是( )

A.h(x)只有一个极值点
B.h(x)有两个极值点,且极小值点小于极大值点
C.g(x)的极小值点小于极大值点,且极小值为﹣2
D.g(x)的极小值点大于极大值点,且极大值为2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2+c,g(x)=aex的图象的一个公共点为P(2,t),且曲线y=f(x),y=g(x)在P点处有相同的切线,若函数f(x)﹣g(x)的负零点在区间(k,k+1)(k∈Z)内,则k=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的偶函数满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减,给出以下四个命题:
①f(2)=0;
②x=﹣4为函数y=f(x)图象的一条对称轴;
③函数y=f(x)在[8,10]单调递增;
④若方程f(x)=m在[﹣6,﹣2]上的两根为x1 , x2 , 则x1+x2=﹣8.
上述命题中所有正确命题的序号为

查看答案和解析>>

同步练习册答案