精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的倾斜角为,且经过点,以坐标原点O为极点,轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足| ,记点N的轨迹为曲线C

1)①设动点,记是直线的向上方向的单位方向向量,且,以t为参数求直线的参数方程

②求曲线C的极坐标方程并化为直角坐标方程;

2)设直线与曲线C交于PQ两点,求的值

【答案】1)①直线的参数方程为为参数),②曲线C的极坐标方程为,直角坐标方程为:;(2

【解析】

1)①由题意可得直线的参数方程为为参数),②设,由题意可得,由可得

2)将的参数方程代入曲线的直角坐标方程中得:,化简得,设为方程的两个根,则,然后利用算出即可.

1)①由题意可得直线的参数方程为为参数)

为参数)

②设,由题意可得

因为点在直线上,所以

所以,即

所以,所以曲线C的直角坐标方程为:

2)将的参数方程代入曲线的直角坐标方程中得:

,化简得

为方程的两个根,则

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】第二届中国国际进口博览会于2019115日至10日在上海国家会展中心举行.它是中国政府坚定支持贸易自由化和经济全球化,主动向世界开放市场的重要举措,有利于促进世界各国加强经贸交流合作,促进全球贸易和世界经济增长,推动开放世界经济发展.某机构为了解人们对“进博会”的关注度是否与性别有关,随机抽取了100名不同性别的人员(男、女各50名)进行问卷调查,并得到如下列联表:

男性

女性

合计

关注度极高

35

14

49

关注度一般

15

36

51

合计

50

50

100

1)根据列联表,能否有99.9%的把握认为对“进博会”的关注度与性别有关;

2)若从关注度极高的被调查者中按男女分层抽样的方法抽取7人了解他们从事的职业情况,再从7人中任意选取2人谈谈关注“进博会”的原因,求这2人中至少有一名女性的概率.

附:.

参考数据:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双纽线最早于1694年被瑞士数学家雅各布·伯努利用来描述他所发现的曲线.在平面直角坐标系中,把到定点,距离之积等于)的点的轨迹称为双纽线C.已知点是双纽线C上一点,下列说法中正确的有(

①双纽线C关于原点O中心对称;

③双纽线C上满足的点P有两个; 的最大值为.

A.①②B.①②④C.②③④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程是,以极点为原点,极轴为轴非负半轴建立平面直角坐标系,直线的参数方程为为参数).

1)写出曲线的直角坐标方程和直线的普通方程;

2)在(1)中,设曲线经过伸缩变换得到曲线,设曲线上任意一点为,当点到直线的距离取最大值时,求此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线(为参数),曲线为参数).

(1)设相交于两点,求

(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点P是曲线上的一个动点,求它到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆)的离心率为,并以抛物线的焦点为上焦点.直线)交抛物线两点,分别以为切点作抛物线的切线,两切线相交于点,又点恰好在椭圆.

1)求椭圆的方程;

2)求的最大值;

3)求证:点恒在的外接圆内.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中有一分鹿问题:今有大夫、不更、簪袅、上造、公士,凡五人,共猎得五鹿.欲以爵次分之,问各得几何.”在这个问题中,大夫、不更、簪袅、上造、公士是古代五个不同爵次的官员,现皇帝将大夫、不更、簪枭、上造、公士这5人分成两组(一组2人,一组3人),派去两地执行公务,则大夫、不更恰好在同一组的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有一个“引葭赴岸”问题:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”其意思为“今有水池1丈见方(即尺),芦苇生长在水的中央,长出水面的部分为1.将芦苇向池岸牵引,恰巧与水岸齐接(如图所示).试问水深、芦苇的长度各是多少?假设,现有下述四个结论:

①水深为12尺;②芦苇长为15尺;③;④.

其中所有正确结论的编号是(

A.①③B.①③④C.①④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点,直线交椭圆于不同的两点,设线段的中点为

1求椭圆的方程;

2的面积为其中为坐标原点时,试问:在坐标平面上是否存在两个定点,使得当直线运动时,为定值?若存在,求出点的坐标和定值;若不存在,请说明理由

查看答案和解析>>

同步练习册答案