精英家教网 > 高中数学 > 题目详情
设偶函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式
f(x)+f(-x)
x
<0的解集为(  )
分析:根据偶函数f(x)在(0,+∞)上为增函数,确定函数f(x)在(-∞,0)上为减函数,从而可解不等式.
解答:解:∵f(x)是偶函数,
f(x)+f(x)
x
<0

∴x>0时,f(x)<0
∵f(1)=0,∴f(x)<f(1),
∵函数f(x)在(0,+∞)上为增函数,
∴0<x<1
∵f(1)=0,∴f(-1)=f(1)=0
∵x<0时,f(x)>0,∴f(x)>f(-1)
∵偶函数f(x)在(0,+∞)上为增函数,
∴函数f(x)在(-∞,0)上为减函数,
∴x<-1
综上,不等式
f(x)+f(-x)
x
<0的解集为(-∞,-1)∪(0,1),
故选A.
点评:本题考查函数单调性与奇偶性的结合,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、设偶函数f(x)在[0,+∞)上为增函数,且f(2)•f(4)<0,那么下列四个命题中一定正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设偶函数f(x)在(-∞,0)上为增函数,且f(2)=0,则不等式
f(x)+f(-x)
x
>0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设偶函数f(x)在(-∞,0]上是增函数,且f(-3)=0,则不等式
f(x)+f(-x)x-3
<0
的解集为
{x|x>3或-3<x<3};
{x|x>3或-3<x<3};

查看答案和解析>>

科目:高中数学 来源: 题型:

设偶函数f(x)在点x=0处可导,则f′(0)=
0
0

查看答案和解析>>

同步练习册答案