精英家教网 > 高中数学 > 题目详情

 

    已知函数.

   (Ⅰ)当时,讨论的单调性;

   (Ⅱ)设时,若对任意,存在,使,求实数的取值范围.

 

 

【答案】

 

【解析】(I)原函数的定义域为

所以,当所以

此时函数上是增函数;在(0,1)上是减函数;

所以此时函数是减函数;

解得(舍去),此时函数上是增函数;

在(0,1)上是减函数;

此时函数

上是减函数;

   

   (Ⅱ)当时,在(0,1)上是减函数,在(1,2)上是增函数,所以对任意

,又已知存在,使

所以

即存在,使

,即

所以,解得,即实数取值范围是

   【命题意图】本题将导数、二次函数、不等式知识有机的结合在一起,考查了利用导数研究函数的单调性、利用导数求函数的最值以及二次函数的最值问题,考查了同学们分类讨论的数学思想以及解不等式的能力;考查了学生综合运用所学知识分析问题、解决问题的能力。

   (1)直接利用函数与导数的关系讨论函数的单调性;(2)利用导数求出的最小值、利用二次函数知识或分离常数法求出在闭区间[1,2]上的最大值,然后解不等式求参数。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2-2x+c在x=-2时有极大值6,在x=1时有极小值,
(1)求a,b,c的值;
(2)求f(x)在区间[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
a•sinx•cosx•cos2x-6cos22x+3
,且f(
π
24
)=0

(Ⅰ)求函数f(x)的周期T和单调递增区间;
(Ⅱ)若f(θ)=-3,且θ∈(-
24
π
24
)
,求θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=asinx+bcosx+c的图象上有一个最低点(
11π
6
,-1)

(Ⅰ)如果x=0时,y=-
3
2
,求a,b,c.
(Ⅱ)如果将图象上每个点的纵坐标不变,横坐标缩小到原来的
3
π
,然后将所得图象向左平移一个单位得到y=f(x)的图象,并且方程f(x)=3的所有正根依次成为一个公差为3的等差数列,求y=f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*),其中x1为正实数.
(Ⅰ)用xn表示xn+1
(Ⅱ)若x1=4,记an=lg
xn+2xn-2
,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则函数f(x)的解析式为(  )
A、f(x)=2sin(
1
2
x+
π
6
)
B、f(x)=2sin(
1
2
x-
π
6
)
C、f(x)=2sin(2x-
π
6
)
D、f(x)=2sin(2x+
π
6
)

查看答案和解析>>

同步练习册答案