精英家教网 > 高中数学 > 题目详情
已知函数f(x)=mx2+3(m-2)x-1在区间(-∞,3]上单调减函数,则实数m的取值范围是
 
考点:二次函数的性质
专题:函数的性质及应用
分析:首先对参数进行分类讨论①m=0②m≠0,进一步对二次函数的对称轴和单调区间进行分类讨论,最后通过几种情况的分析取集合的并集,求得相应的结果.
解答: 解:①当m=0时,函数f(x)=-6x-1
根据一次函数的单调性得:
函数在区间(-∞,3]上单调减函数.
②当m>0时,函数f(x)=mx2+3(m-2)x-1的对称轴方程为:x=
3(2-m)
2m

由于函数在(-∞,3]上单调减函数,
所以:
3(2-m)
2m
≥3

解得:0<m≤
2
3

③当m<0时,函数f(x)=mx2+3(m-2)x-1的对称轴方程为:x=
3(2-m)
2m

由于函数在(-∞,3]上单调减函数,
而对于开口方向向下的抛物线在(-∞,3]不可能是递减函数.
所以m∈Φ.
综上所述:m的取值范围为:0≤m≤
2
3
点评:本题考查的知识要点:二次函数的对称轴与单调区间的关系,分类讨论思想的应用.属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知偶函数f(x)在区间[0,+∞)上单调递减,且f(3)=0.若f(m+1)>0,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线bx-ay+c=0(a>0)是曲线y=ln
1
x
在x=3处的切线,f(x)=a•2x+b•3x,若f(x+1)>f(x),则x的取值范围是(  )
A、(-2,1)
B、(1,+∞)
C、(-∞,1)
D、(-2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,-4),
b
=(-1,3),
c
=(6,5),
p
=
a
+2
b
-
c
,则以
a
b
为基底,求
p

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2的图象经过点M(1,4),曲线在点M处的切线恰好与直线x+9y=0垂直.
(1)求实数a、b的值;
(2)求函数f(x)在[-1,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足约束条件
0≤x≤2
0≤y≤2
3y-x≥2
,目标函数z=ax-y取得最大值的唯一最优解解是(2,
4
3
),则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角坐标平面上一动点P到点F(1,0)的距离比它到直线x=-2的距离小1.求动点p的轨迹方程;直线l过点A(-1,0)且与点P的轨迹交于不同的两点M、N,若△MFN的面积为4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
a
=(1,1,x),
b
=(1,2,1),
c
=(1,1,1),满足条件(
c
-
a
)•(2
b
)=-2,则x的值为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

一光线经y轴上一点A(0,m)射向x轴,入射点为B(n,0),若反射光线恰好经过点C(2m,n),则
m
n
=
 

查看答案和解析>>

同步练习册答案