精英家教网 > 高中数学 > 题目详情

【题目】若函数在实数集上的图象是连续不断的,且对任意实数存在常数使得恒成立,则称是一个“关于函数”.现有下列“关于函数”的结论:

①常数函数是“关于函数”;

②正比例函数必是一个“关于函数”;

③“关于函数”至少有一个零点;

是一个“关于函数”.

其中正确结论的序号是_______.

【答案】①④

【解析】①对任一常数函数,存在,有 ,所以有,所以常数函数是“关于函数”;②令正比例函数解析式为设存在实数,使得为一个“函数”,则,则,即= ,要对任意的满足,则,不可能,故正比例函数不可能是一个“一个关于的函数”;③“关于函数”为,当函数不恒为时,有,则同号,又因为函数在实数集上的图象是连续不断的, 的图象与轴无交点,即无零点;④对于设存在使得,即存在使得,也就是存在使得,也就是存在使得,此方程有解,所以④正确,故正确的序号为①④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数.

(Ⅰ)若,设,试证明存在唯一零点,并求的最大值;

(Ⅱ)若关于的不等式的解集中有且只有两个整数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行下面的程序框图,如果输入的t=0.01,则输出的n=(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:在数列中,若为常数)则称为“等方差数列”,下列是对“等方差数列”的有关判断( )

①若是“等方差数列”,在数列 是等差数列;

是“等方差数列”;

③若是“等方差数列”,则数列为常)也是“等方差数列”;

④若既是“等方差数列”又是等差数列,则该数列是常数数列.

其中正确命题的个数为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出40个数:1,2,4,7,11,16,…,要计算这40个数的和,如图给出了该问题的程序框图,那么框图①处和执行框②处可分别填入( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据下列条件,分别求抛物线的标准方程:

(1)抛物线的焦点是双曲线16x2-9y2=144的左顶点;

(2)抛物线的焦点Fx轴上,直线y=-3与抛物线交于点AAF=5.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 所在平面互相垂直,且 分别为ACDCAD的中点

1)求证: 平面BCG

2)求三棱锥D-BCG的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2
(1)求函数f(x)的定义域和值域;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若曲线处的切线与直线垂直,求的值;

(Ⅱ)当时,求证:存在实数使.

查看答案和解析>>

同步练习册答案