精英家教网 > 高中数学 > 题目详情
14.若f(x)=ex,则$\lim_{△x→0}\frac{{f({1+2△x})-f(1)}}{△x}$=(  )
A.eB.2eC.-eD.$\frac{1}{2}e$

分析 $\lim_{△x→0}\frac{{f({1+2△x})-f(1)}}{△x}$=2$\underset{lim}{△x→0}$$\frac{f(1+2△x)-f(1)}{2△x}$=2f′(1),由此能求出结果.

解答 解:∵f(x)=ex
∴f′(x)=ex
∴$\lim_{△x→0}\frac{{f({1+2△x})-f(1)}}{△x}$=2$\underset{lim}{△x→0}$$\frac{f(1+2△x)-f(1)}{2△x}$=2f′(1)=2e.
故选:B.

点评 本题考查极限的求法,是基础题,解题时要认真审题,注意导数概念、极限性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.在△ABC中,角A,B,C所对的边分别为a,b,c,且a2+b2-c2=ab,c=3,sinA+sinB=2$\sqrt{6}$sinAsinB,则△ABC的周长为 3+3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:
(1)直线DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.男婴为24人,女婴为8人;出生时间在白天的男婴为31人,女婴为26人.
(1)将下面的2×2列联表补充完整;
出生时间
性别
晚上白天合计
男婴
女婴
合计
(2)能否在犯错误的概率不超过0.1的前提下认为婴儿性别与出生时间有关系?
参考公式:(1)K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d);
(2)独立性检验的临界值表:
P(K2≥k00.100.050.010
k02.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.B.5π+6C.3π+6D.4π+6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f (x)及其导数f′(x),若存在x0,使得f (x0)=f′(x0),则称x0是f (x)的一个“巧值点”,下列函数中,存在“巧值点”的是①②③⑤.(填上所有正确的序号)
①f (x)=x2
②f(x)=sinx,
③f (x)=lnx,
④f (x)=tanx,
⑤f(x)=x+$\frac{1}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.化简:$\sqrt{\frac{1+cosα}{1-cosα}}$+$\sqrt{\frac{1-cosα}{1+cosα}}$(π<α<$\frac{3π}{2}$)=-$\frac{2}{sinα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.比较下列各组数的大小:
(1)1.9与1.9-3
(2)0.7${\;}^{2-\sqrt{3}}$与0.70.3
(3)0.60.4与0.40.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图的程序框图,若输出的$S=\frac{31}{32}$,则输入的整数p的值为(  )
A.6B.5C.4D.3

查看答案和解析>>

同步练习册答案