精英家教网 > 高中数学 > 题目详情

【题目】求倾斜角为直线y= +1的倾斜角的一半,且分别满足下列条件的直线方程:(1)
【答案】解:∵直线l1:y= +1的斜率k1
∴直线l1的倾斜角为120°,∴所求直线的倾斜角为60°,斜率k= .
∵过点(-4,1),∴直线方程为y-1= (x+4)
(1)经过点(-4,1)
(2)在y轴上的截距为-10.

【答案】
(1)解:∵直线l1:y= +1的斜率k1
∴直线l1的倾斜角为120°,∴所求直线的倾斜角为60°,斜率k= .
∵过点(-4,1),∴直线方程为y-1= (x+4)
(2)解:∵在y轴上截距为-10,∴直线方程为y=x-10
【解析】(1)由于已知直线的倾斜角是120o,则其一半是60o,由点斜式求出直线方程.
(2)由于已知直线的倾斜角是120o,则其一半是60o,由斜截式求出直线方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a为常数) (Ⅰ)当a=4时,求函数y=f(x)的单调区间;
(Ⅱ)若对于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范围;
(Ⅲ)若方程f(x)+a+1=0在x∈(1,2)上有且只有一个实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知g(x)是各项系数均为整数的多项式,f(x)=2x2﹣x+1,且满足f(g(x))=2x4+4x3+13x2+11x+16,则g(x)的各项系数之和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)=Acos(ωx+φ)(A,ω>0)的图象如图所示,为得到g(x)=﹣Asin(ωx+ )的图象,可以将f(x)的图象(
A.向右平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向左平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若f(x)的图象与直线y=kx有两个不同的交点,则实数k的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在 上的奇函数 满足: ,且在区间 上单调递减,则不等式 的解集是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.“p∨q”是“p∧q”的充分不必要条件
B.样本10,6,8,5,6的标准差是3.3
C.K2是用来判断两个分类变量是否相关的随机变量,当K2的值很小时可以推定两类变量不相关
D.设有一个回归直线方程为 =2﹣1.5x,则变量x每增加一个单位, 平均减少1.5个单位.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一边长为6的正方形铁片,在铁片的四角各截去一个边长为x的小正方形后,沿图中虚线部分折起,做成一个无盖方盒.
(1)试用x表示方盒的容积V(x),并写出x的范围;
(2)求方盒容积V(x)的最大值及相应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC-A′B′C′底面是边长为1的正三角形侧面为全等的矩形且高为8求一点自A点出发沿着三棱柱的侧面绕行一周后到达A′点的最短路线长.

本题条件不变求一点自A点出发沿着三棱柱的侧面绕行两周后到达A′点的最短路线长.

查看答案和解析>>

同步练习册答案