分析 当-1≤x≤k时,函数f(x)=log2(1-x)+1为减函数,且在区间左端点处有f(-1)=2,当k≤x≤a时,f(x)在[k,$\frac{1}{2}$],[1,a]上单调递增,在[$\frac{1}{2}$,1]上单调递减
从而当x=1时,函数有最小值,即为f(1)=0,函数在右端点的函数值为f(2)=2,结合图象即可求出a的取值范围.
解答 解:当-1≤x≤k时,函数f(x)=log2(1-x)+1为减函数,
且在区间左端点处有f(-1)=2,
令f(x)=0,解得x=$\frac{1}{2}$,
令f(x)=x|x-1|=2,解得x=2,
∵f(x)的值域为[0,2],
∴k≤$\frac{1}{2}$,
当k≤x≤a时,f(x)=x|x-1|=$\left\{\begin{array}{l}{{x}^{2}-x,1≤x≤a}\\{-{x}^{2}+x,k≤x<1}\end{array}\right.$,
∴f(x)在[k,$\frac{1}{2}$],[1,a]上单调递增,在[$\frac{1}{2}$,1]上单调递减,
从而当x=1时,函数有最小值,即为f(1)=0
函数在右端点的函数值为f(2)=2,
∵f(x)的值域为[0,2],
∴1≤a≤2
故答案为:[1,2]
点评 本题考查分段函数的问题,根据函数的单调性求出函数的值域是关键,属于中档题
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ?x∉R,x2-x+2>0 | B. | ?x0∈R,x02-x0+2≤0 | ||
C. | ?x0∈R,$x_0^2-{x_0}+2<0$ | D. | ?x0∉R,$x_0^2-{x_0}+2≤0$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(0)=0且f(x)为偶函数 | B. | f(0)=0且f(x)为奇函数 | ||
C. | f(x)为增函数且为奇函数 | D. | f(x)为增函数且为偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com