精英家教网 > 高中数学 > 题目详情

【题目】随着智能手机和电子阅读器越来越普及,人们的阅读习惯也发生了改变,手机和电子阅读产品方便易携带,越来越多的人习惯通过手机或电子阅读器阅读.某电子书阅读器厂商随机调查了人,统计了这人每日平均通过手机或电子阅读器阅读的时间(单位:分钟),由统计数据得到如下频率分布直方图,已知阅读时间在 三组对应的人数依次成等差数列.

(1)求频率分布直方图中 的值;

(2)若将日平均阅读时间不少于分钟的用户定义为“电子阅读发烧友”,将日平均阅读时间少于分钟的用户定义为“电子阅读潜在爱好者”,现从上述“电子阅读发烧友”与“电子阅读潜在爱好者”的人中按分层抽样选出人,再从这人中任取人,求恰有人为“电子阅读发烧友”的概率.

【答案】(1);(2)

【解析】试题分析:(1)由,解得

,∴;(2)根据分层抽样方法可得抽取“发烧友”抽取人,“潜在爱好者”抽取人,利用列举法可得这人中任选人的事件有个,其中从人中任取人恰有人为“电子阅读发烧友”的事件共有种,根据古典概型概率公式可得结果.

试题解析:(1)由

解得

,∴.

(2)“电子阅读发烧友”“电子阅读潜在爱好者”的人数之比为: ,所以“发烧友”抽取人,

“潜在爱好者”抽取人,

记事件:从人中任取人恰有人为“电子阅读发烧友”,

设两名“电子阅读发烧友”的人记为: ,三名“电子阅读潜在爱好者”的人记为:

则这人中任选人有:

,共种情形,

符合题设条件的有:

共有种,

因此恰有人为“电子阅读发烧友”的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修44:坐标系与参数方程]已知直线l过原点且倾斜角为 ,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为psin =4cos.

(I)写出直线l的极坐标方程和曲线C 的直角坐标方程;

()已知直线l过原点且与直线l相互垂直,lC=-M,lC=N,其中M,N不与原点重合,求OMN 面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学高一女生共有450人,为了了解高一女生的身高情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:

组别

频数

频率

145.5149.5

8

0.16

149.5153.5

6

0.12

153.5157.5

14

0.28

157.5161.5

10

0.20

161.5165.5

8

0.16

165.5169.5



合计



1)求出表中字母所对应的数值;

2)在给出的直角坐标系中画出频率分布直方图;

3)估计该校高一女生身高在149.5165.5范围内有多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a13a2,且2an+13anan-1.

1)求证:数列{an+1an}是等比数列,并求数列{an}通项公式;

2)求数列{nan}的前n项和为Tn,若对任意的正整数n恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现安排甲、乙、丙、丁、戊5名同学参加2022年杭州亚运会志愿者服务活动,有翻译、导游、礼仪、司机四项工作可以安排,以下说法正确的是( )

A. 每人都安排一项工作的不同方法数为

B. 每项工作至少有一人参加,则不同的方法数为

C. 如果司机工作不安排,其余三项工作至少安排一人,则这5名同学全部被安排的不同方法数为

D. 每项工作至少有一人参加,甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学高等数学这学期分别用两种不同的数学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图。 学校规定:成绩不得低于85分的为优秀

(1)根据以上数据填写下列的的列联表

总计

成绩优秀

成绩不优秀

总计

(2)是否有的把握认为成绩优异与教学方式有关?”(计算保留三位有效数字)

下面临界值表仅供参考:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数和数列满足下列条件:,当时,,其中均为非零常数.

1)若是等差数列,求实数的值;

2)令),若,求数列的通项公式;

3)令),若,数列满足,若数列有最大值,最小值,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)解关于的不等式

(2)若不等式的解集为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016·山东卷)已知数列{an}的前n项和Sn3n28n{bn}是等差数列,且anbnbn1.

(1)求数列{bn}的通项公式;

(2)cn,求数列{cn}的前n项和Tn.

查看答案和解析>>

同步练习册答案